
1

last time (1)
exceptions: way for hardware to run OS

OS sets up table of exception handlers
hardware jumps to exception handler
runs exception handler in kernel mode
typically OS returns to user mode on return
external events (I/O, timers)
internal events (system calls, out-of-bounds access, …)

time multiplexing + threads
divide up time
when OS runs (via exception), can decide to switch
thread = illusion of own CPU

2

last time (2)
context switch

switch thread on CPU by restoring saved register/etc. values and
saving current register/etc. values for later switch back
restore registers/etc. values saved a while ago
typically also switch address space (program → real addrs)
typically switching stacks

process = thread(s) + address space

(start) signals: kinda like exceptions for normal programs

3

some anonymous feedback [edited for space]
“…It has only been two classes but we are all struggling to keep up
with the pace- which we are worried about since Professor Reiss
said ”he was hoping he would move faster”. it is very difficult to
take notes at the pace that Professor Reiss speaks/ flips between
slides. Even with doing the reading, all my attention has to go to
either taking notes …and missing out on understanding the
information, or …and having to rewatch the lecture later…I would
really appreciate if the pace was slowed down slightly…”

yes, I didn’t cover as much as expected — so some topics were dropped
please ask questions/slow me down

“…We were not given guidance on what ”expected output” should
be- this was really helpful for the 2130 labs…”

for the make lab, there’s a lot of outputs that would be okay…
4

quiz Q1
wrong prerequisties:

lookup.c: lookup.h main.c

prerequisite is overwritten by rule:
lookup.o: lookup.c lookup.h
(tab)python generate_lookup.py >lookup.c
…

5

quiz Q2/3
A asks to read from keyboard, but no input available

needs OS help, explicit request — system call

B does some computation
B sends a signal to process C

I should’ve dropped this (we didn’t really cover signals yet)
requires system call, since C can’t access process B’s stuff directly

key pressed, causing A to run
non-system call exception (from keyboard I/O)

A acceeses invalid memory location and is terminated
non-system call exception (from invalid memory access)

C’s signal handler runs and prints message (system call)
6

quiz Q4
printf(…, x / 0);

local variables from printf? — no
printf not called yet!

buffer on the stack — yes

kernel mode — yes, what processor does for exceptions

7

quiz Q5
adjusting stack pointer

user: subtract instruction — no memory access

reading input from the keyboard
kernel: don’t allow programs to directly talk to potentially shared devices

converting buffer from string to integer and vice-versa
user: just computation

returning from printf
user: printf mostly runs in user mode (even though it makes system
calls internally)

8

signals
Unix-like operating system feature
like exceptions for processes:

can be triggered by external process
kill command/system call

can be triggered by special events
pressing control-C
other events that would normal terminate program

‘segmentation fault’
illegal instruction
divide by zero

can invoke signal handler (like exception handler)
9

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

10

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

10

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

10

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

10

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

11

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

11

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

11

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

12

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

12

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

12

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
13

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
13

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
13

SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

14

SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

14

handling Segmentation Fault
...
void handle_sigsegv(int num) {

puts("got SIGSEGV");
}

int main(void) {
struct sigaction act;
act.sa_handler = handle_sigsegv;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGSEGV, &act, NULL);

asm("movq %rax, 0x12345678");
}

got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV

15

handling Segmentation Fault
...
void handle_sigsegv(int num) {

puts("got SIGSEGV");
}

int main(void) {
struct sigaction act;
act.sa_handler = handle_sigsegv;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGSEGV, &act, NULL);

asm("movq %rax, 0x12345678");
}

got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV

15

signal API
sigaction — register handler for signal

kill — send signal to process

pause — put process to sleep until signal received

sigprocmask — temporarily block/unblock some signals from
being received

signal will still be pending, received if unblocked

… and much more

16

kill command
kill command-line command : calls the kill() function

kill 1234 — sends SIGTERM to pid 1234

kill -USR1 1234 — sends SIGUSR1 to pid 1234

17

SA_RESTART
sa.sa_flags = SA_RESTART;

general version:
sa.sa_flags = SA_NAME | SA_NAME | SA_NAME; (or 0)

if SA_RESTART included:
after signal handler runs, attempt to restart interrupted operations (e.g.
reading from keyboard)

if SA_RESTART not included:
after signal handler runs, interrupted operations return typically an error
(errno == EINTR)

18

output of this?

void handle_sigusr1(int num) {
write(1, "X", 1);
kill(2000, SIGUSR1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handler_usr1;
sigaction(SIGUSR1, &act, NULL);
kill(1000, SIGUSR1);

}

pid 1000
void handle_sigusr1(int num) {

write(1, "Y", 1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handler_usr1;
sigaction(SIGUSR1, &act, NULL);

}

pid 2000

If these run at same time, expected output?
A. XY B. X C. Y
D. YX E. X or XY, depending on timing F. crash
G. (nothing) H. something else 19

output of this? (v2)
void handle_sigusr1(int num) {

write(1, "X", 1);
kill(2000, SIGUSR1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handler_usr1;
sigaction(SIGUSR1, &act);
kill(1000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_sigusr1(int num) {

write(1, "Y", 1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handler_usr1;
sigaction(SIGUSR1, &act);
while (1) pause();

}

pid 2000

If these run at same time, expected output?
A. XY B. X C. Y
D. YX E. X or XY, depending on timing F. crash
G. (nothing) H. something else 20

x86-64 Linux signal delivery (1)
suppose: signal happens while foo() is running

OS saves registers to user stack

OS modifies user registers, PC to call signal handler

address of __restore_rt
saved registers
PC when signal happened
local variables for foo…

the stack

stack pointer
before signal delivered

stack pointer
when signal handler started

21

x86-64 Linux signal delivery (2)
handle_sigint:

...
ret

...
__restore_rt:

// 15 = "sigreturn" system call
movq $15, %rax
syscall

__restore_rt is return address for signal handler
sigreturn syscall restores pre-signal state

if SA_RESTART set, restarts interrupted operation
also handles caller-saved registers
also might change which signals blocked (depending how sigaction was
called) 22

signal handler unsafety (0)
void foo() {

/* SIGINT might happen while foo() is running */
char *p = malloc(1024);
...

}

/* signal handler for SIGINT
(registered elsewhere with sigaction() */

void handle_sigint() {
printf("You pressed control-C.\n");

}

23

signal handler unsafety (1)
void *malloc(size_t size) {

...
to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void foo() {
/* This malloc() call interrupted */
char *p = malloc(1024);
p[0] = 'x';

}

void handle_sigint() {
// printf might use malloc()
printf("You pressed control-C.\n");

} 24

signal handler unsafety (1)
void *malloc(size_t size) {

...
to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void foo() {
/* This malloc() call interrupted */
char *p = malloc(1024);
p[0] = 'x';

}

void handle_sigint() {
// printf might use malloc()
printf("You pressed control-C.\n");

} 24

signal handler unsafety (2)
void handle_sigint() {

printf("You pressed control-C.\n");
}

int printf(...) {
static char *buf;
...
buf = malloc()
...

}

25

signal handler unsafety: timeline
foo starts

malloc: to_return = next_to_return;

handle_sigint

printf

malloc: to_return = next_to_return;
malloc: next_to_return += ...;

printf: store/use returned buf

foo: malloc returns pointer printf is using!
26

signal handler unsafety (3)
foo() {

char *p = malloc(1024)... {
to_return = next_to_return;
handle_sigint() { /* signal delivered here */

printf("You pressed control-C.\n") {
buf = malloc(...) {

to_return = next_to_return;
next_to_return += size;
return to_return;

}
...

}
}
next_to_return += size;
return to_return;

}
/* now p points to buf used by printf! */

}

27

signal handler unsafety (3)
foo() {

char *p = malloc(1024)... {
to_return = next_to_return;
handle_sigint() { /* signal delivered here */

printf("You pressed control-C.\n") {
buf = malloc(...) {

to_return = next_to_return;
next_to_return += size;
return to_return;

}
...

}
}
next_to_return += size;
return to_return;

}
/* now p points to buf used by printf! */

}

27

signal handler safety
POSIX (standard that Linux follows) defines “async-signal-safe”
functions

these must work correctly no matter what they interrupt

…and no matter how they are interrupted

includes: write, _exit

does not include: printf, malloc, exit

28

blocking signals
avoid having signal handlers anywhere:

can instead block signals

can be done with sigprocmask or pthread_sigmask

signal will become “pending” instead

OS will not deliver unless unblocked
similar mechanism provided by CPU for interrupts (“disabling
interrupts”)

29

controlling when signals are handled
first, block a signal

then use system calls to inspect pending signals
example: sigwait

and/or unblock signals only at certain times
some special functions to help:
sigsuspend (unblock until handler runs),
pselect (unblock while checking for I/O), …

30

synchronous signal handling
int main(void) {

sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGINT);
sigprocmask(SIG_BLOCK, &set, NULL);

printf("Waiting for SIGINT (control-C)\n");
if (sigwait(&set, NULL) == SIGINT) {

printf("Got SIGINT\n");
}

}

31

lab
program-to-program chat with shared memory + signals

has to be on one machine and with same user

32

timing HW
individual homework
time a bunch of things

function call
system call
starting signal handler
running command in the shell
sending signal to process and waiting for it to send signal back

don’t expect this to be really autograded
I think the length is appropriate (since signals lab will help with two
of the items)
…but hasn’t been done before

33

34

opening a file?
open("/u/creiss/private.txt", O_RDONLY)

say, private file on portal

on Linux: makes system call

kernel needs to decide if this should work or not

35

how does OS decide this?
argument: needs extra metadata

what would be wrong using…

system call arguments?

where the code calling open came from?

36

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

37

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

37

authentication
password

hardware token

…

38

user IDs
most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

39

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

40

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

40

backup slides

41

setjmp/longjmp
jmp_buf env;

main() {
if (setjmp(env) == 0) { // like try {
...
read_file()
...

} else { // like catch
printf("some error happened\n");

}
}

read_file() {
...
if (open failed) {

longjmp(env, 1) // like throw
}
...

} 42

implementing setjmp/longjmp
setjmp:

copy all registers to jmp_buf
… including stack pointer

longjmp
copy registers from jmp_buf
… but change %rax (return value)

43

setjmp psuedocode
setjmp: looks like first half of context switch
setjmp:

movq %rcx, env−>rcx
movq %rdx, env−>rdx
movq %rsp + 8, env−>rsp // +8: skip return value
...
save_condition_codes env−>ccs
movq 0(%rsp), env−>pc
movq $0, %rax // always return 0
ret

44

longjmp psuedocode
longjmp: looks like second half of context switch
longjmp:

movq %rdi, %rax // return a different value
movq env−>rcx, %rcx
movq env−>rdx, %rdx
...
restore_condition_codes env−>ccs
movq env−>rsp, %rsp
jmp env−>pc

45

setjmp weirdness — local variables
Undefined behavior:
int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

46

setjmp weirdness — fix
Defined behavior:
volatile int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

47

on implementing try/catch
could do something like setjmp()/longjmp()

but setjmp is slow

48

setjmp exercise
jmp_buf env; int counter = 0;
void bar() {

putchar('Z');
++counter;
if (counter < 2) {

longjmp(env, 1);
}

}
int main() {

while (setjmp(env) == 1) {
putchar('X');

}
putchar('Y');
bar();

}

Expected output?
A. YZ B. XYZ C. YZYZ D. XYZXYZ
E. XYZYZ F. YZXYZ G. something else H. varies/might crash

49

setjmp exercise soln
jmp_buf env; int counter = 0;
void bar() {

putchar('Z'); // 3 Z 12 Z
++counter; // 4 13
if (counter < 2) { // 5 (1<2) 14 (2<2)

longjmp(env, 1); // 6*
} // 15

}
int main() {

while (setjmp(env) == 1) { // 0 (ret 0) 7*(ret 1) 9 (ret 0)
putchar('X'); // 8 X

}
putchar('Y'); // 1 Y 10 Y
bar(); // 2 11

} // 16

51

on implementing try/catch
could do something like setjmp()/longjmp()

but setjmp is slow

52

low-overhead try/catch (1)
main() {

printf("about to read file\n");
try {

read_file();
} catch(...) {

printf("some error happened\n");
}

}
read_file() {

...
if (open failed) {

throw IOException();
}
...

} 53

low-overhead try/catch (2)
main:
...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

54

low-overhead try/catch (2)
main:
...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

54

low-overhead try/catch (2)
main:
...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

54

low-overhead try/catch (2)
main:
...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

54

lookup table tradeoffs
no overhead if throw not used

handles local variables on registers/stack, but…

larger executables (probably)

extra complexity for compiler

55

	signals
	idea
	example / sigaction
	signal IDs/events
	wait, SIGSEGV?
	signal API
	SA_RESTART
	exercise
	delivery
	caution: signal-safety
	alt signal handling

	accounts
	authentication v authorization
	user ID idea
	backup slides
	user-space exceptional flow control
	setjmp / longjmp
	exercise
	aside: C++ exceptions

