
1

last time
signals versus exceptions

hardware runs exception handlers of OS
OS runs signal handlers of programs

signals for forwarding exceptions to programs
registering signal handlers
signal unsafety and blocking signals

authorization versus authentication
OS (kernel) tracking user IDs

one for each program
separate from user names 2

common issues in the lab
if input is 1234\n,
then running scanf("%d",...) reads 1234 but not \n

call fgets will return immediately
caused some to send SIGUSR1 too early to other process

shm_open(FILENAME, ...); CONTENTS = mmap(...)
some people called both inbox/outbox and got confused

if you don’t exit from your SIGTERM/SIGINT handler…
then SIGTERM/SIGINT won’t make your process exit

handler replaces default “terminate program” action

3

anonymous feedback (1)
“I think the class goes pretty slow, we should definitely go faster.
One thing I think you should consider is not answering so many
questions during the lecture as Professor Hott also answered many
questions and was dramatically slowed down in the process. I think
the focus should be on content and remediation/help can be done
in supplementary videos. Good luck. Looking forward to this
semester.”

I’m not sure about balance between too slow/too fast
usually assume that I have more problems with not getting enough
questions than too many (but reality is probably in between)

4

anonymous feedback (2)
“The signal handling lab was way too difficult. I had a bug in my
program that took 5 different TAs to figure out… I ended up
staying in lab for 3 hours because each TA would be stuck for 20
minutes before leaving to help someone else.”

students should be debugging, not TAs (TAs should provide guidance
but not do the debugging work)
are there things re: debugging procedures we could’ve provided better
guidance on??
probably can mitigate by pointing out common problems above in future
semesters

5

anonymous feedback (3)
“I would really appreciate if we were granted an extension on the
signals lab from this week. The write-up wasn’t that long, but
actually implementing the features for the various steps
(particularly steps 2 and 3) took quite a long time.……I think the
signals material is important, so I really wish we could get some
flexibility and some additional help. Perhaps a video walk-through
of the thinking behind the lab to explain the program flow more
could be really beneficial while still leaving the final work of
generating a solution to us. Thank you for your consideration.

we have late policy (90% credit until Sat morning, 80% until Sunday
morning), but not planning on extension
probably some ways of adding more examples to reading/lab writeup for
this Fall?

6

opening a file?
open("/u/creiss/private.txt", O_RDONLY)

say, private file on portal

on Linux: makes system call

kernel needs to decide if this should work or not

7

how does OS decide this?
argument: needs extra metadata

what would be wrong using…

system call arguments?

where the code calling open came from?

8

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

9

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

9

authentication
password

hardware token

…

10

user IDs
most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

11

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

12

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

12

POSIX groups
gid_t getegid(void);

// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

13

id
cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

14

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

15

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

15

POSIX file permissions
POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

on directories, ‘execute’ means ‘search’ instead

16

permissions encoding
permissions encoded as 9-bit number, can write as octal: XYZ

octal divides into three 3-bit parts:
user permissions (X), group permissions (Y), other permission (Z)

each 3-bit part has a bit for ‘read’ (4), ‘write’ (2), ‘execute’ (1)

700 — user read+write+execute; group none; other none

451 — user read; group read+execute; other none

17

chmod — exact permissions
chmod 700 file
chmod u=rwx,og= file
user read write execute; group/others no accesss
chmod 451 file
chmod u=r,g=rx,o= file
user read; group read/execute; others no access

18

chmod — adjusting permissions
chmod u+rx foo
add user read and execute permissions
leave other settings unchanged
chmod o-rwx,u=rx foo
remove other read/write/execute permissions
set user permissions to read/execute
leave group settings unchanged

19

POSIX/NTFS ACLs
more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

20

POSIX ACL syntax
group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions
user:tj1a:−−−

POSIX acl rule:
user take precedence over group entries

21

POSIX ACLs on command line
getfacl file
setfacl -m 'user:tj1a:---' file
add line to ACL
setfacl -x 'user:tj1a' file
REMOVE line from acl
setfacl -M acl.txt file
add to acl, but read what to add from a file
setfacl -X acl.txt file
remove from acl, but read what to remove from a file

22

authorization checking on Unix
checked on system call entry

no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

23

keeping permissions?
which of the following would still be secure?

A. performing authorization checks in the standard library in
addition to system call handlers

B. performing authorization checks in the standard library instead
of system call handlers

C. making the user ID a system call argument rather than storing it
persistently in the OS’s memory

24

superuser
user ID 0 is special

superuser or root
(non-Unix) or Administrator or SYSTEM or …

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

25

superuser v kernel mode
superuser : OS :: kernel mode : hardware

programs running as superuser still in user mode
just change in how OS acts on system calls, etc.

26

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
27

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
28

Unix password storage
typical single-user system: /etc/shadow

only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

29

aside: beyond passwords
/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

30

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
31

changing user IDs
int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

32

sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

33

set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

34

set-user ID gates
set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel
way to allow normal users to do one thing that needs privileges

write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

35

uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

36

set-user-ID program v syscalls
hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

37

privilege escalation
privilege escalation — vulnerabilities that allow more privileges

code execution/corruption in utilities that run with high privilege
e.g. buffer overflow, command injection

login, sudo, system services, …
bugs in system call implementations

logic errors in checking delegated operations

38

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

39

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt
39

a very broken setuid program
print_grade.c:
int main(int argc, char **argv) {

char filename[500];
sprintf(filename, "all-grades/%s/%s.txt",

argv[1], getenv("USER"));
int fd = open(filename, O_RDWR);
char buffer[1024];
read(fd, buffer, 1024);
printf("%s: %s\n", argv[1], buffer);

}

HUGE amount of stuff can go wrong

examples?
40

set-user ID programs are very hard to write
what if stdin, stdout, stderr start closed?

what if signals setup weirldy?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

41

other privileged escalation issues
sudo problem: trusted code that’s supposed to enforce restriction
can be fooled into not really enforcing it
also can occur in other contexts:

system call letting program access things it shouldn’t?
browser letting web page javascript access things it shouldn’t?
web application giving users access to files they shouldn’t have?
mobile phone OS allowing location access without location
permission?
… 42

some security tasks (1)
helping students collaborate in ad-hoc small groups on shared
server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

43

some security tasks (2)
letting students assignment files to faculty on shared server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

44

some security tasks (3)
running untrusted game program from Internet?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

45

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

46

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

47

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

47

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

48

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

48

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

48

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

48

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

49

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

49

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

49

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

49

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

49

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

50

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

50

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

50

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

50

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

50

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

51

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

51

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

51

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

51

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

51

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

51

backup slides

52

another very broken setuid program (setup)
allow users to print files, but only if less than 1KB

53

another very broken setuid program
print_short_file.c:

int main(int argc, char **argv) {
struct stat st;
if (stat(argv[1], &st) == −1) abort();
// make sure argv[1] is owned by user running this
if (st.st_uid != getuid()) abort();
// and that it's less than 1 KB
if (st.st_size >= 1024) abort();
char command[1024];
sprintf(command, "print %1000s", argv[1]);
system(command);
return EXIT_SUCCESS;

}
54

a delegation problem
consider printing program marked setuid to access printer

decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

55

a broken solution
if (original user can read file from argument) {

open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

56

a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

link: create new directory entry for file
another option: rename, symlink (“symbolic link” — alias for
file/directory)
another possibility: run a program that creates secret file
(e.g. temporary file used by password-changing program)

time-to-check-to-time-of-use vulnerability 57

TOCTTOU solution
temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

58

practical TOCTTOU races?
can use symlinks maze to make check slower

symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

lots of time spent following symbolic links when program opening
toprint.txt

gives more time to sneak in unlink/link or (more likely) rename

59

exercise
which (if any) of the following would fix for a TOCTTOU
vulnerability in our setuid printing application? (assume the
Unix-permissions without ACLs are in use)

[A] both before and after opening the path passed in for reading,
check that the path is accessible to the user who ran our
application
[B] after opening the path passed in for reading, using fstat with
the file descriptor opened to check the permissions on the file
[C] before opening the path, verify that the user controls the file
referred to by the path and the directory containing it

60

	accounts
	authentication v authorization
	user ID idea
	group IDs

	permissions and access control lists
	file permissions

	enforcing permissions
	exercise: why not check

	superuser
	becoming superuser
	on boot, /bin/login
	set-user-ID/sudo

	privilege escalation
	buggy set-user-ID program 1
	a litany of silly setuid program issues
	other privilege escalation contexts

	exercises on the POSIX model
	virtual memory
	address spaces
	address translation overview
	simple paging with four pages

	backup slides
	buggy set-user-ID program 2
	TOCTTOU example
	exercise

