last time (1)

multi-level page tables

split virtual page number into parts first part: index in 1st level table 1st level table points to 2nd level table (instead of data) second part: index in 2nd level table

•••

page table permission bits

protecting OS memory but making it accessible without changing PTBR disabling writes for safe sharing

last time (2)

allocate-on-demand

don't tell processor about everything "allocated" to program fixup disagreement on page fault (instead of crashing program)

copy-on-write

tell processor: this is read-only make a copy and fixup disagreement on protection fault

anonymous feedback (1)

"In OH, some of your TAs are incredibly unhelpful. It is clear that they prioritize their friends over other students who need help. This is not the case for all of them, but when it happens it is incredibly frustration to be waiting and not get help because they are helping in order of who they know and not when students arrived."

anonymous feedback (2)

"the amount of piazza questions for this HW and the overwhelming amount of people at OH indicates that the topic was not taught well and the instructions are unclear"

selected common confusion on assignment

translate \approx processor's memory lookup can follow lookup diagram from slides (1- or 2-level)

 $\label{eq:page_allocate} page_allocate \approx OS's allocation-on-demand \\ allocate things that translate would find missing \\ allocates both page tables and the 'data' they point to \\ assignment originally wasn't explicit about this, but translate() can't work if you \\ don't \end{aligned}$

needs to handle initializing page tables (so translate knows there's nothing there yet)

how big are virtual addresses (the part used for translation)? based on page table sizes not all of size_t used

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused

physical addresses	bytes	_	physical addresses	byt	es		
0x00-3		22 33	0x20-3			72	13
0x04-7	44 55	66 77	0x24-7	D4	F5	36	07
0x08-B	88 99	AA BB	0x28-B	89	9A	AB	BC
0x0C-F	CC DD	EE FF	0x2C-F	CD	DE	EF	F0
0x10-3	1A 2A	3A 4A	0x30-3	ΒA	0A	ΒA	0A
0x14-7	1B 2B	3B 4B	0x34-7	DB	0B	DB	0B
0x18-B	1C 2C	3C 4C	0x38-B	EC	0C	EC	0C
0x1C-F	1C 2C	3C 4C	0x3C-F	FC	0C	FC	0C

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused

page table base register 0×20 ; translate virtual address 0×131

physical _{bytes} physical _{bytes} addresses addresses $0x20 + 0x4 \times 1 = 0x24$ 0x00-300 11 22 33 0x20-300 91 72 13 PTE 1 value: $0 \times 04 - 7 | 44 55 66 77$ 0x24-7D4 F5 36 07 $0 \times D4 = 1101 \quad 0100$ 0x28-B89 9A AB BC 0x08-B88 99 AA BB PPN 110. valid 1 $0 \times 0 C - F | C C D D E E F F$ 0x2C-FCD DE EF F0 0x30-3BA 0A BA 0A $0 \times 10 - 3 | 1A | 2A | 3A | 4A$ 0x34-7DB 0B DB 0B $0 \times 14 - 7 | 1B 2B 3B 4B$ 0x18-B1C 2C 3C 4C 0x38-BEC OC EC OC 0x3C-FFC 0C FC 0C $0 \times 1C - F | 1C 2C 3C 4C$

7

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused

physical bytes	$0 \times 131 = 1 \ 0011 \ 0001$
	$0x20 + 0x4 \times 1 = 0x24$
0x20-300 91 72 13	PTE 1 value:
0x24-7D4 F5 36 07	$0 \times D4 = 1101 \ 0100$
0x28-B89 9A AB BC	PPN 110, valid 1
0x2C-FCD DE EF F0	PTE 2 addr:
0x30-3BA 0A BA 0A	110 000 + 110 \times 1 = 0x36
0x34-7DB 0B DB 0B	<i>PTE 2 value:</i> 0xDB
0x38-BEC 0C EC 0C	
0x3C-FFC 0C FC 0C]7
	0x28-B 89 9A AB BC 0x2C-F CD DE EF F0 0x30-3 BA 0A BA 0A 0x34-7 DB 0B DB 0B 0x38-B EC 0C EC 0C

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused

physical _{bytes} addresses	physical _{bytes} addresses	0x131 = 1 0011 0001 $0x20 + 0x4 \times 1 = 0x24$
0x00-300 11 22 33	0x20-300 91 72 13	PTE 1 value:
0x04-744 55 66 77	0x24-7D4 F5 36 07	$0 \times D4 = 1101 \ 0100$
0x08-B88 99 AA BB	0x28-B <mark>89 9A AB BC</mark>	PPN 110, valid 1
0x0C-FCC DD EE FF	0x2C-FCD DE EF F0	PTE 2 addr:
0x10-31A 2A 3A 4A	0x30-3 <mark>BA 0A BA 0A</mark>	110 000 + 110 $ imes$ 1 = 0x36
0x14-71B 2B 3B 4B	0x34-7DB 0B DB 0B	PTE 2 value: 0xDB
0x18-B1C 2C 3C 4C	0x38-BEC 0C EC 0C	PPN 110 ; valid 1
0x1C-F1C 2C 3C 4C	0x3C-FFC 0C FC 0C	$M[110 001 (0x31)] = 0x0A_7$

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused

physical bytes addresses	physical _{bytes} addresses	0x131 = 1 0011 0001 $0x20 + 0x4 \times 1 = 0x24$
0x00-300 11 22 33	0x20-300 91 72 13	PTE 1 value:
0x04-744 55 66 77	0x24-7D4 F5 36 07	$0 \times D4 = 1101 \ 0100$
0x08-B88 99 AA BB	0x28-B <mark>89 9A AB BC</mark>	PPN 110, valid 1
0x0C-FCC DD EE FF	0x2C-FCD DE EF F0	PTE 2 addr:
0x10-31A 2A 3A 4A	0x30-3 <mark>BA 0A BA 0A</mark>	110 000 + 110 $ imes$ 1 = 0x36
0x14-7 <mark>1B 2B 3B 4B</mark>	0x34-7DB 0B DB 0B	PTE 2 value: 0xDB
0x18-B1C 2C 3C 4C	0x38-BEC 0C EC 0C	PPN 110; valid 1
0x1C-F1C 2C 3C 4C	0x3C-FFC 0C FC 0C	$M[110 001 (0x31)] = 0x0A_7$

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused

$\begin{array}{llllllllllllllllllllllllllllllllllll$	physical bytes addresses	physical _{bytes} addresses	$0 \times 131 = 1$ 0011 0001 $0 \times 20 + 0 \times 4 \times 1 = 0 \times 24$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0x00-300 11 22 33		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0x04-744 55 66 77	0x24-7D4 F5 36 07	
0x10-3 1A 2A 3A 4A 0x30-3 BA 0A BA 0A 110 000 + 110 × 1 = 0x36 0x14-7 1B 2B 3B 4B 0x34-7 DB 0B DB PTE 2 value: 0xDB 0x18-B 1C 2C 3C 4C 0x38-B EC 0C EC 0C PPN 110; valid 1	0x08-B88 99 AA BB	0x28-B <mark>89 9A AB BC</mark>	PPN 110 , valid 1
0x14-7 1B 2B 3B 4B 0x34-7 DB 0B DB 0B PTE 2 value: 0xDB 0x18-B 1C 2C 3C 4C 0x38-B EC 0C EC 0C PPN 110; valid 1	0×0C-FCC DD EE FF	0x2C-FCD DE EF F0	PTE 2 addr:
0x18-B1C 2C 3C 4C 0x38-BEC 0C EC 0C PPN 110; valid 1	0x10-31A 2A 3A 4A	0x30-3 <mark>BA 0A</mark> BA 0A	110 000 + 110 \times 1 = 0x36
	0x14-7 <mark>1B 2B 3B 4B</mark>	0x34-7DB 0B DB 0B	PTE 2 value: 0xDB
	0x18-B1C 2C 3C 4C	0x38-BEC 0C EC 0C	PPN 110 ; valid 1
$0 \times 1C - F 1C 2C 3C 4C$ $0 \times 3C - F FC 0C FC 0C$ $M[110 001 (0 \times 31)] = 0 \times 0A_7$	0x1C-F1C 2C 3C 4C	0x3C-FFC 0C FC 0C	$M[110 001 (0x31)] = 0x0A_7$

2-level splitting

9-bit virtual address

6-bit physical address

8-byte pages \rightarrow 3-bit page offset (bottom bits) 9-bit VA: 6 bit VPN + 3 bit PO

6-bit PA: 3 bit PPN + 3 bit PO

8 entry page tables \rightarrow 3-bit VPN parts 9-bit VA: 3 bit VPN part 1; 3 bit VPN part 2

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;

physical byt addresses	es	physical bytes addresses
0x00-300	11 22 33	0x20-3D0 D1 D2 D3
0x04-744	55 66 77	0x24-7D4 D5 D6 D7
0x08-B88	99 AA BB	0x28-B89 9A AB BC
0x0C-FCC	DD EE FF	0x2C-FCD DE EF F0
0x10-31A	2A 5A 4A	0x30-3BA 0A BA 0A
0x14-71B	2B 3B 4B	0x34-7DB 0B DB 0B
0x18-B1C	2C 3C 4C	0x38-BEC 0C EC 0C
0×1C-F1C	2C 3C 4C	0x3C-FFC 0C FC 0C

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;

physical bytes addresses	physical bytes addresses	$0 \times 109 = 100 \ 011 \ 001$
	addresses	, (PTE 1 at:
0x00-300 11 22 33	0x20-3D0 D1 D2 D3	$\hat{0}$ x10 + PTE size times 4 (100))
0x04-744 55 66 77	0x24-7D4 D5 D6 D7	PTE 1: 0x1B at 0x14
0x08-B88 99 AA BE	0x28-B89 9A AB BC	PTE 1: PPN 000 (0) valid 1
0x0C-FCC DD EE FF	0x2C-FCD DE EF F0	(second table at:
0x10-31A 2A 5A 4A	0x30-3BA 0A BA 0A	$\hat{0}$ (000) times page size = 0x00)
0x14-71B 2B 3B 4E	0x34-7DB 0B DB 0B	<i>PTE 2</i> : 0x33 at 0x03
0x18-B1C 2C 3C 4C	0x38-BEC 0C EC 0C	PTE 2: PPN 001 (1) valid 1
0x1C-F1C 2C 3C 4C	0x3C-FFC 0C FC 0C	$001 001 = 0 \times 09 \rightarrow 0 \times 99$

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;

physical bytes addresses	physical bytes addresses	0 imes 109 = 100 011 001
addresses	addresses	, (PTE 1 at:
0x00-300 11 22 33	0x20-3D0 D1 D2 D3	$0 \times 10 + PTE$ size times 4 (100))
0x04-7 <mark>44 55 66 77</mark>	0x24-7D4 D5 D6 D7	<i>PTE 1:</i> 0x1B at 0x14
0x08-B88 99 AA BB	0x28-B89 9A AB BC	PTE 1: PPN 000 (0) valid 1
0x0C-FCC DD EE FF	0x2C-FCD DE EF F0	(second table at:
0x10-31A 2A 5A 4A	0x30-3BA 0A BA 0A	$\hat{0}$ (000) times page size = 0x00)
0x14-71B 2B 3B 4B	0x34-7DB 0B DB 0B	<i>PTE 2</i> : 0x33 at 0x03
0x18-B1C 2C 3C 4C	0x38-BEC 0C EC 0C	PTE 2: PPN 001 (1) valid 1
0x1C-F1C 2C 3C 4C	0x3C-FFC 0C FC 0C	001 001 $= 0 \times 09 \rightarrow 0 \times 99$
-	· · · · · · · · · · · · · · · · · · ·	. y

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;

$\begin{array}{c} physical \\ addresses \\ 0 \times 00 - 3 \underbrace{00\ 11\ 22\ 33} \\ 0 \times 04 - 7\ 44\ 55\ 66\ 77 \\ 0 \times 08 - B\ 88\ 99\ AA\ BB \\ 0 \times 0C - F\ CC\ DD\ EE\ FF \\ \end{array} \begin{array}{c} physical \\ bytes \\ addresses \\ 0 \times 20 - 3 \underbrace{D0\ D1\ D2\ D3} \\ 0 \times 24 - 7\ D4\ D5\ D6\ D7 \\ 0 \times 28 - B\ 89\ 9A\ AB\ BC \\ 0 \times 2C - F\ CD\ DE\ EF\ F0 \\ \end{array} \begin{array}{c} 0 \times 109 = 100\ 011\ 001 \\ (PTE\ 1\ at: \\ 0 \times 10 + PTE\ size\ times\ 4\ (10) \\ PTE\ 1:\ 0 \times 1B\ at\ 0 \times 14 \\ PTE\ 1:\ PN\ 000\ (0)\ valid \\ (second\ table\ at: \\ \end{array}$	
$\begin{array}{c} 0 \times 04 - 7 & 44 & 55 & 66 & 77 \\ 0 \times 08 - B & 88 & 99 & AA & BB \\ 0 \times 0C - F & CC & DD & EE & FF \end{array} \\ \begin{array}{c} 0 \times 24 - 7 & D4 & D5 & D6 & D7 \\ 0 \times 28 - B & 89 & 9A & AB & BC \\ 0 \times 2C - F & CD & DE & EF & F0 \end{array} \\ \begin{array}{c} 0 \times 10^{+} + 1^{+} L & size times 4 (11) \\ PTE & 1: & 0 \times 1B & at & 0 \times 14 \\ PTE & 1: & 0 \times 1B & at & 0 \times 14 \\ PTE & 1: & PPN & 000 & (0) & valid \\ (second table at: \\ \end{array}$	
0x04-7 44 55 66 77 0x24-7 D4 D5 D6 D7 PTE 1: 0x1B at 0x14 0x08-B 88 99 AA BB 0x28-B 89 9A AB BC PTE 1: 0x1B at 0x14 0x0C-F CC DD EE FF 0x2C-F CD DE EF F0 0x0C-F CC DD EE FF 0x2C-F CD DE EF F0	00))
0x08-B88 99 AA BB 0x0C-FCC DD EE FF0x28-B89 9A AB BC 0x2C-FCD DE EF F0PTE 1: PPN 000 (0) valid (second table at:	//
$0 \times 0C - F CC DD EE FF 0 \times 2C - F CD DE EF F0 (second table at:$	1
$0 \times 10 - 3$ $1A 2A 5A 4A$ $0 \times 30 - 3$ $BA 0A BA 0A$ 0 (000) times page size = 0;	×00)
0x14-71B2B3B4B 0x34-7DB0BDB0B PTE2: 0x33 at 0x03	,
0x18-B1C 2C 3C 4C 0x38-BEC 0C EC 0C PTE 2: PPN 001 (1) valid	1
$0x1C-F1C 2C 3C 4C \qquad 0x3C-FFC 0C FC 0C 001 001 = 0x09 \rightarrow 0x99$	9 。

9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE

page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;

nhycical	physical	0 100 100 011 001
physical bytes	physical bytes	$0 \times 109 = 100 011 001$
physical addresses	physical bytes addresses	, (PTE 1 at:
0x00-300 11 22 33	0x20-3D0 D1 D2 D3	$0 \times 10 + PTE$ size times 4 (100))
0x04-7 <mark>44 55 66 77</mark>	0x24-7D4 D5 D6 D7	<i>PTE 1:</i> 0x1B at 0x14
0x08-B88 99 AA BB	0x28-B89 9A AB BC	PTE 1: PPN 000 (0) valid 1
0x0C-FCC DD EE FF	0x2C-FCD DE EF F0	(second table at:
0x10-31A 2A 5A 4A	0x30-3BA 0A BA 0A	$\hat{0}$ (000) times page size = 0x00)
0x14-71B 2B 3B 4B	0x34-7DB 0B DB 0B	<i>PTE 2</i> : 0x33 at 0x03
0x18-B1C 2C 3C 4C	0x38-BEC 0C EC 0C	PTE 2: PPN 001 (1) valid 1
0x1C-F1C 2C 3C 4C	0x3C-FFC 0C FC 0C	$001 001 = 0x09 \rightarrow 0x99$

connections over mailboxes

real Internet: mailbox-style communication send packets to particular mailboxes no gaurentee on order, when received

sockets implemented on top of this

conections

connections: two-way channel for messages

extra operations: connect, accept

recall: sockets

open connection then ...

read+write just like a terminal file

doesn't look like individual messages

"connection abstraction"

application	HTTP, SSH, SMTP,			
transport	TCP, UDP,	reach correct program,		
		reliablity/streams		
network	IPv4, IPv6,	reach correct machine		
		(across networks)		
link	Ethernet, Wi-Fi,	coordinate shared wire/radio		
physical		encode bits for wire/radio		

application	HTTP, SSH, SMTP,	applicat	11 0		
transport	TCP, UDP,	reach correct program,			
		reliablity/streams			
network	IPv4, IPv6,	reach correct machine			
		(across networks)			
link	Ethernet, Wi-Fi,	coordinate shared wire/radio			
physical		encode bits for wire/radio			

network limitations/failures

messages lost

messages delayed/reordered

messages limited in size

messages corrupted

network limitations/failures

messages lost

messages delayed/reordered

messages limited in size

messages corrupted

dealing with network message lost

handling lost message: acknowledgements

handling lost message

handling lost message

handling lost message

exercise: lost acknowledgement

exercise: how to fix this?

- A. machine A needs to send "Got 'got it!' "
- B. machine B should resend "Got it!" on its own
- C. machine A should resend the original message on its own
- D. none of these

answers

send "Got 'got it!' "?
same problem: Now send 'Got Got Got it'?

resend "Got it!" own its own? how many times? — B doesn't have that info

resend original message?

yes!

as far as machine A can be, *exact same situation* as losing original message

lost acknowledgements

lost acknowledgements

lost acknowledgements

network limitations/failures

messages lost

messages delayed/reordered

messages limited in size

messages corrupted

delayed message

delayed acknowledgements

delayed acknowledgements

delayed acknowledgements

network limitations/failures

messages lost

messages delayed/reordered

messages limited in size

messages corrupted

splitting messages: try 1

reconstructed message: The meeting is at 12pm.

splitting messages: try 1 — problem 1

splitting messages: try 1 - problem 1

reconstructed message: The meetingThe meeting is at 12pm.

exercise: other problems?

other scenarios where we'd also have problems?

- 1. message (instead of acknowledgment) is lost
- 2. first message from machine A is delayed a long time by network
- 3. acknowledgment of second message lost instead of first

splitting messages: try 2

reconstructed message: The meeting is at 12pm.

splitting messages: try 2 — missed ack

reconstructed message: The meeting is at 12pm.

splitting messages: try 2 — problem

A thinks: part 1 + part 2 acknowleged!

splitting messages: version 3

network limitations/failures

messages lost

messages delayed/reordered

messages limited in size

messages corrupted

message corrupted

instead of sending "message"

```
say \mathsf{Hash}(\mathsf{``message''}) = \mathsf{0xABCDEF12}
```

```
then send "0xABCDEF12,message"
```

when receiving, recompute hash

pretend message lost if does not match

"checksum"

these hashes commonly called "checksums"

in UDP/TCP, hash function: treat bytes of messages as array of integers; then add integers together

going faster

so far: send one message, get acknowledgments

pretty slow

instead, can send a bunch of parts and get them acknowledged together

need to do *congestion control* to avoid overloading network

backup slides