
1



last time (1)
multi-level page tables

split virtual page number into parts
first part: index in 1st level table
1st level table points to 2nd level table (instead of data)
second part: index in 2nd level table
…

page table permission bits
protecting OS memory but making it accessible without changing PTBR
disabling writes for safe sharing

2



last time (2)
allocate-on-demand

don’t tell processor about everything “allocated” to program
fixup disagreement on page fault (instead of crashing program)

copy-on-write
tell processor: this is read-only
make a copy and fixup disagreement on protection fault

3



anonymous feedback (1)
“In OH, some of your TAs are incredibly unhelpful. It is clear that
they prioritize their friends over other students who need help. This
is not the case for all of them, but when it happens it is incredibly
frustration to be waiting and not get help because they are helping
in order of who they know and not when students arrived.”

4



anonymous feedback (2)
“the amount of piazza questions for this HW and the overwhelming
amount of people at OH indicates that the topic was not taught
well and the instructions are unclear”

5



selected common confusion on assignment
translate ≈ processor’s memory lookup

can follow lookup diagram from slides (1- or 2-level)

page_allocate ≈ OS’s allocation-on-demand
allocate things that translate would find missing
allocates both page tables and the ‘data’ they point to

assignment originally wasn’t explicit about this, but translate() can’t work if you
don’t

needs to handle initializing page tables (so translate knows there’s
nothing there yet)

how big are virtual addresses (the part used for translation)?
based on page table sizes
not all of size_t used

6



2-level example
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused
page table base register 0x20; translate virtual address 0x131

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 3A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-300 91 72 13
0x24-7D4 F5 36 07
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x131 = 1 0011 0001
0x20 + 0x4 ×1 = 0x24
PTE 1 value:
0xD4 = 1101 0100
PPN 110, valid 1

7



2-level example
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused
page table base register 0x20; translate virtual address 0x131

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 3A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-300 91 72 13
0x24-7D4 F5 36 07
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x131 = 1 0011 0001
0x20 + 0x4 ×1 = 0x24
PTE 1 value:
0xD4 = 1101 0100
PPN 110, valid 1

7



2-level example
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused
page table base register 0x20; translate virtual address 0x131

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 3A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-300 91 72 13
0x24-7D4 F5 36 07
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x131 = 1 0011 0001
0x20 + 0x4 ×1 = 0x24
PTE 1 value:
0xD4 = 1101 0100
PPN 110, valid 1
PTE 2 addr:
110 000 + 110 × 1 = 0x36
PTE 2 value: 0xDB

7



2-level example
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused
page table base register 0x20; translate virtual address 0x131

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 3A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-300 91 72 13
0x24-7D4 F5 36 07
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x131 = 1 0011 0001
0x20 + 0x4 ×1 = 0x24
PTE 1 value:
0xD4 = 1101 0100
PPN 110, valid 1
PTE 2 addr:
110 000 + 110 × 1 = 0x36
PTE 2 value: 0xDB
PPN 110; valid 1
M[110 001 (0x31)] = 0x0A

7



2-level example
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused
page table base register 0x20; translate virtual address 0x131

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 3A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-300 91 72 13
0x24-7D4 F5 36 07
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x131 = 1 0011 0001
0x20 + 0x4 ×1 = 0x24
PTE 1 value:
0xD4 = 1101 0100
PPN 110, valid 1
PTE 2 addr:
110 000 + 110 × 1 = 0x36
PTE 2 value: 0xDB
PPN 110; valid 1
M[110 001 (0x31)] = 0x0A

7



2-level example
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused
page table base register 0x20; translate virtual address 0x131

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 3A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-300 91 72 13
0x24-7D4 F5 36 07
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x131 = 1 0011 0001
0x20 + 0x4 ×1 = 0x24
PTE 1 value:
0xD4 = 1101 0100
PPN 110, valid 1
PTE 2 addr:
110 000 + 110 × 1 = 0x36
PTE 2 value: 0xDB
PPN 110; valid 1
M[110 001 (0x31)] = 0x0A

7



2-level splitting
9-bit virtual address

6-bit physical address

8-byte pages → 3-bit page offset (bottom bits)

9-bit VA: 6 bit VPN + 3 bit PO

6-bit PA: 3 bit PPN + 3 bit PO

8 entry page tables → 3-bit VPN parts

9-bit VA: 3 bit VPN part 1; 3 bit VPN part 2
8



2-level exercise (2)
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;
page table base register 0x10; translate virtual address 0x109

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 5A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-3D0 D1 D2 D3
0x24-7D4 D5 D6 D7
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x109 = 100 011 001
(PTE 1 at:
0x10 + PTE size times 4 (100))
PTE 1: 0x1B at 0x14
PTE 1: PPN 000 (0) valid 1
(second table at:
0 (000) times page size = 0x00)
PTE 2: 0x33 at 0x03
PTE 2: PPN 001 (1) valid 1
001 001 = 0x09 → 0x99

9



2-level exercise (2)
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;
page table base register 0x10; translate virtual address 0x109

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 5A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-3D0 D1 D2 D3
0x24-7D4 D5 D6 D7
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x109 = 100 011 001
(PTE 1 at:
0x10 + PTE size times 4 (100))
PTE 1: 0x1B at 0x14
PTE 1: PPN 000 (0) valid 1
(second table at:
0 (000) times page size = 0x00)
PTE 2: 0x33 at 0x03
PTE 2: PPN 001 (1) valid 1
001 001 = 0x09 → 0x99

9



2-level exercise (2)
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;
page table base register 0x10; translate virtual address 0x109

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 5A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-3D0 D1 D2 D3
0x24-7D4 D5 D6 D7
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x109 = 100 011 001
(PTE 1 at:
0x10 + PTE size times 4 (100))
PTE 1: 0x1B at 0x14
PTE 1: PPN 000 (0) valid 1
(second table at:
0 (000) times page size = 0x00)
PTE 2: 0x33 at 0x03
PTE 2: PPN 001 (1) valid 1
001 001 = 0x09 → 0x99

9



2-level exercise (2)
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;
page table base register 0x10; translate virtual address 0x109

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 5A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-3D0 D1 D2 D3
0x24-7D4 D5 D6 D7
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x109 = 100 011 001
(PTE 1 at:
0x10 + PTE size times 4 (100))
PTE 1: 0x1B at 0x14
PTE 1: PPN 000 (0) valid 1
(second table at:
0 (000) times page size = 0x00)
PTE 2: 0x33 at 0x03
PTE 2: PPN 001 (1) valid 1
001 001 = 0x09 → 0x99

9



2-level exercise (2)
9-bit virtual addresses, 6-bit physical; 8 byte pages, 1 byte PTE
page tables 1 page; PTE: 3 bit PPN (MSB), 1 valid bit, 4 unused;
page table base register 0x10; translate virtual address 0x109

physical
addresses bytes
0x00-300 11 22 33
0x04-744 55 66 77
0x08-B88 99 AA BB
0x0C-FCC DD EE FF
0x10-31A 2A 5A 4A
0x14-71B 2B 3B 4B
0x18-B1C 2C 3C 4C
0x1C-F1C 2C 3C 4C

physical
addresses bytes
0x20-3D0 D1 D2 D3
0x24-7D4 D5 D6 D7
0x28-B89 9A AB BC
0x2C-FCD DE EF F0
0x30-3BA 0A BA 0A
0x34-7DB 0B DB 0B
0x38-BEC 0C EC 0C
0x3C-FFC 0C FC 0C

0x109 = 100 011 001
(PTE 1 at:
0x10 + PTE size times 4 (100))
PTE 1: 0x1B at 0x14
PTE 1: PPN 000 (0) valid 1
(second table at:
0 (000) times page size = 0x00)
PTE 2: 0x33 at 0x03
PTE 2: PPN 001 (1) valid 1
001 001 = 0x09 → 0x99

9



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

10



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

10



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

10



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

10



connections over mailboxes
real Internet: mailbox-style communication

send packets to particular mailboxes
no gaurentee on order, when received

sockets implemented on top of this

11



conections
connections: two-way channel for messages
extra operations: connect, accept

machine
A

machine
B

B: open connection to A?

Conn = Connect(B)

A: connection to B OK!

Conn = Accept()

B: (A, “2 + 2 = ?”)

Send(Conn, “2 + 2 = ?”)

“2 + 2 = ?” = Recv(Conn)

A: (B, “4”)

Send(Conn, “4”)

“4” = Recv(Conn)

12



recall: sockets
open connection then …

read+write just like a terminal file

doesn’t look like individual messages

“connection abstraction”

13



layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

14



layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

15



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

16



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

17



dealing with network message lost

machine
A

machine
B

“The meeting is at 12pm.”

machine
A

machine
B

“The meeting is at 12pm.”

18



handling lost message: acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

19



handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

20



handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

20



handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

20



exercise: lost acknowledgement

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

exercise: how to fix this?
A. machine A needs to send “Got ‘got it!’ ”
B. machine B should resend “Got it!” on its own
C. machine A should resend the original message on its own
D. none of these

21



answers
send “Got ‘got it!’ ”?

same problem: Now send ‘Got Got Got it’?

resend “Got it!” own its own?
how many times? — B doesn’t have that info

resend original message?
yes!
as far as machine A can be, exact same situation as losing original
message

23



lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

24



lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

24



lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

24



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

25



delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

26



delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

26



delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

26



delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost

27



delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost

27



delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost
27



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

28



splitting messages: try 1

machine
A

machine
B

“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm. 29



splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

got it“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meetingThe meeting is at 12pm.

30



splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

got it“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meetingThe meeting is at 12pm. 30



exercise: other problems?
other scenarios where we’d also have problems?
1. message (instead of acknowledgment) is lost
2. first message from machine A is delayed a long time by network
3. acknowledgment of second message lost instead of first

31



splitting messages: try 2

machine
A

machine
B

part 1: “The meeting”

got itpart 2: “ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm.

32



splitting messages: try 2 — missed ack

machine
A

machine
B

part 1: “The meeting”

got itpart 1: “The meeting”

got itpart 2: “ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm. 33



splitting messages: try 2 — problem

machine
A

machine
B

part 1: “The meeting”

got itpart 1: “The meeting”

got itpart 2: “ is at 12pm.”

A thinks: part 1 + part 2 acknowleged!
34



splitting messages: version 3

machine
A

machine
B

part 1: “The meeting”

got part 1part 1: “The meeting”

got part 1

part 2: “ is at 12pm.”

timeout
for part 2

part 2: “ is at 12pm.”

got part 2

35



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

36



message corrupted
instead of sending “message”

say Hash(“message”) = 0xABCDEF12

then send “0xABCDEF12,message”

when receiving, recompute hash

pretend message lost if does not match

37



“checksum”
these hashes commonly called “checksums”

in UDP/TCP, hash function: treat bytes of messages as array of
integers; then add integers together

38



going faster
so far: send one message, get acknowledgments

pretty slow

instead, can send a bunch of parts and get them acknowledged
together

need to do congestion control to avoid overloading network

39



backup slides

40


	mailbox model
	review: connection abstraction
	recall: sockets
	layers preview
	handling network failures
	acknowledgments
	exercise: lost acks
	solution: lost acks
	delayed acks

	splitting into multiple
	checksums
	aside: going faster

	backup slides

