

changelog

17 Feb 2023: memory access example: shift things so address
labels are not off from numbers shown

17 Feb 2023: translate()/page_allocate diagrams: label in slide as
LEVELS=1

last time (1)
assignment Q&A

multi-level page table lookup

unreliable networks

“best effort” model of the internet

limited message size

sometimes messages lost

sometimes messages delayed/reordered
sometimes messages corrupted

last time (2)

sequence numbers

acknowledgments

someone needs to resend after timeout
can get lost, that's okay

checksums

some themes in anonymous feedback
pagetable difficulty
lab difficulty

quizzes: how many/etc.

Quiz Q3

1 first-level page table with

a valid entry pointing to a second-level page table with
512 valid entries

a valid entry pointing to a second-level page table with
(1000-512) valid entries and a few invalid entries

and 510 invalid entries

three 4096-byte page tables

Quiz Q4

0x120008 = PTBR + VPN part 1 x PTE size =
0x1200000 + VPN part 1 x 8 = VPN part 1 =1

0x123040 =

PPN from 1st level x page size + VPN part 2 x PTE size —
VPN part 2 =8

0x6010 =
PPN from 2nd level x page size + page offset — page offset = 0x10

Quiz Q5

“It then runs a function, whose machine code is loaded at
addresses 0x2040-0x2072, which writes 3 8-byte values to the stack
at addresses OxFFF8, OxFFFO, and OxFFES."

page at 0x2000-0x2FFF

code loaded on first instruction’s page fault
can't tell processor about only part of page being loaded

page at 0xFO00-OxFFFF

whole page of stack allocated on first access

HW difficulty

“..I feel like several components of the assignment we have not fully learned and
some we just learned about in lecture today. Additionally, | think while a checkpoint
is a reasonable idea, we could all benefit from the extra time and just have the first
two parts be due next week. | have been in office hours the last two days and it
seems like barely any students know what is going on."

“While the quiz made sense and was related to the lectures and readings, this
homework assignment has a lot of things that you need to rely on TA's or word of
mouth for. For example, how would we know that we need to memset after
posix_memalign if we don't even know how to look that up..”

“| feel like the content of the lectures is too far removed from what we are asked to
do in the homeworks....”

mistakes | made with homework (1)

overestimated C familiarity from CSO1
a lot of problems from C pointer issues
fails in ways that are not intuitive, especially if you aren’t checking every
step
why | assumed understanding manpage for posix_memalign was not big
deal
future: warmup assignment should probably review C pointer stuff
somehow
b/c of this, put halfway point of assignment at wrong place

in future semesters, need to plan more lecture time for virtual
memory

10

mistakes | made with homework (2)

some things in writeup are/were too easy to miss
page table entry format

physical page number v physical address
what things need to be allocated

need more structure re: testing
students just using code in assignment -+ autograder was not the
intention

seems like (based on submissions) many students writing a lot of code
before testing it, rather than testing in small pieces

11

pagetable grading

submission 1 (25% of normal homework)

32% LEVELS = 1 reasonable attempt
64% reasonable attempt on two other items
3% code style

submission 2 (25% of normal homework)

50% everything present
40% LEVELS = 1 functionality
10% LEVELS > 1 functionality

submission 3 (200% of normal homework)

12

some pointer stuff

Ox080
Ox070
Ox060
Ox050
Ox040
Ox030
0x020
0x010
OxXO000

Ox456789

0x123456

OxABCDEF

x = 0x50

size_t x = 0x50;

*»X_ (compile-time error)

13

some pointer stuff
Ox080 size_t x = 0x50;

*»¥_ (compile-time error)
Ox070

size_t *ptr;
Ox456789 -] ’
0x060 0x123456 ptr = (size_t *) X

0x050 OxABCDEF *ptr == OXABCDEF

0x040 x((size_t *) x) == OxABCDEF

Ox020
Ox010
OxXO000

some pointer stuff
size_t x = 0x50;

Ox080
Ox070
Ox060
Ox050
Ox040
Ox030
0x020
0x010
OxXO000

Ox456789

0x123456

OxABCDEF

x = 0x50

s
7
XL

(compile-time error)

13

some pointer stuff

Ox080
Ox070
0x060
Ox050
Ox040
0x030
Ox020
Ox010
OxXO000

size_t x = 0x50;

xF2] (compile-time error)

Ox456789

0x123456

OxABCDEF

size_t addr = x + 16;
size_t xptr;

ptr = (size_t *) addr;
*ptr == 0x456789

x = 0x50

size_t xptr;
ptr = (size_t *) x;
ptr[2] == 0x456789

13

some pointer stuff

0x080 size_t x = 0x50;

0x070 void change_arg(size_t *arg) {
Ox456789 *arg = OXFFFF;

Ox060 "ox123456 |

0x050 OxABCDEF

Ox040

0x030 [X=0x50

Ox020

Ox010

OxXO000

some pointer stuff

0x080 size_t x = 0x50;
0x070 void change_arg(size_t *arg) {
Ox456789 xarg = OXFRER;
Ox060 "ox123456 |
0x050 OxABCDEF
change_arg(&x);
0x040 change_arg((size_t*) 0x30);
Ox020
Ox010

OxXO000 13

some pointer stuff
Ox080 size_t x = 0x50;

void change_arg(size_t *arg) {

Ox070 xarg = OXFFFF;

0x060
Ox050

Ox456789 1
0x123456
OxABCDEF

change_arg(&x + 1);
Ox040 5= FFFE change_arg((size_t*) 0x38);

Ox030 X = Ox50
Ox020
Ox010
Ox000 13

some pointer stuff

Ox080
Ox070
Ox060
Ox050
Ox040
Ox030
0x020
0x010
OxXO000

Ox456789

0x123456

OxFFFF

x = 0x50

size_t x = 0x50;

void change_arg(size_t *arg) {
*arg = OXFFFF;
}

change_arg((size_t *) x);
change_arg((size_t *) 0x50);

13

some pointer stuff

Ox080
Ox070
Ox060
Ox050
Ox040
Ox030
0x020
0x010
OxXO000

Ox456789

0x123456

OxABCDEF

X

= OXFFFF

void *x = (void *) 0x50

void change_arg(void **xarg) A{
xarg = (void x) OxFFFF;

¥

change_arg((void *x) &x);
change_arg((void **) 0x30);

13

some pointer stuff

Ox080
Ox070
Ox060
Ox050
Ox040
Ox030
0x020
0x010
OxXO000

Ox456789

0x123456

OxABCDEF

?

= OxFFFF

x = 0x50

void *x = (void *) 0x50

void change_arg(void **xarg) {
xarg = (void x) OxFFFF;
¥

change_arg(&x + 1);
change_arg((void *x) 0x38);

13

some pointer stuff

Ox080
Ox070
Ox060
Ox050
Ox040
Ox030
0x020
0x010
OxXO000

Ox456789

0x123456

OxFFFF

x = 0x50

void *x = (void *) 0x50

void change_arg(void **xarg) {
xarg = (void x) OxFFFF;

¥

change_arg((void **) x);
change_arg((void **) 0x50);

13

address/page table entry format

(with POBITS=12, LEVELS=1)

bits 63-21 \ bits 20-12 bits 11-1 | bit 0
page table entry physical page number unused valid bit
virtual address | unused \ virtual page number page offset
physical address physical page number page offset

in assignment: value from posix_memalign = physical address

14

pa = translate(va) [LEVELS=1]

translate(va)

0x20 x page size

0x10000 + VPNxS8
0x10000

physical page 0x20

, Page offset from va

PPN = 0x20 ‘ unused ‘ valid =1 ‘

A .
EV|rtua| page number from va

15

page_allocate(va) [LEVELS=1]

unused | unused | valid = 0 |

0x10000 + VPNx8
0x10000

A .
EV|rtua| page number from va

16

page_allocate(va) [LEVELS=1]

}from posix_memalign

NEW x page size

PPN = NEW [unused | valid = 1 |

0x10000 + VPNx8
0x10000

A .
EV|rtua| page number from va

0x05898 p————————— PTBR —— 16

next week’s lab

code review your submission 2 with other students
must be in person!

can't attend lab? talk to me!

use the feedback to improve your submission 3

17

lab difficulty

“I wish we could at least get more explanation for what is going on
in the networking lab. | understood Tuesday's lecture enough to at
least get the concept, but the lab write-up itself was pretty opaque
and it felt like we were being thrown into the deep end to actually
implement the networking. | spent the whole 75 minutes in lab just
going over the reading and trying to figure out what exactly we
were supposed to do.."”

18

lab difficulty

was surprised by confusion re: recvd() function + setTimeout()

oops! should have realized you haven't seen these kinds of interfaces
before

probably need an introduction to this type of interface in lecture in
the future

19

callback-based programming (1)

/* library code you don't write */
void mainLoop() {
while (true) {
Event event = getNextEvent();
if (event.type == RECIEVED) {
recvd(...);
} else if (event.type == TIMEOUT) {
(event.timeout_function) (...);

}

20

callback-based programming (2)

/* your code, called by library x/
void recvd(...) {

setTimeout(..., timerCallback, ...);

}

void timerCalback(...) {

}

21

callback-based programming
writing scripts in a webpage
many graphical user interface libraries

sometimes servers that handle lots of connections

22

protocol

GETO — start

other end acknowledges by giving data
if they don't acknowledge, you need to send again

ACKn

request message n + 1 by acknowledging message n

not quite same purpose as acknowledgments in lecture examples
(in lab, the respoonse is your ‘acknowledgment’ of your request;
you retry if you don't get it)

23

feedback re: quizzes

“I would appreciate if the quizzes were a little longer. We learn a
lot in this class and | don't think 5 questions (sometimes with no
partial credit) is the best representation of our skills.”

“would you ever consider dropping the lowest quiz grade?”

“I've found that the quizzes are incredibly difficult...| feel that the
scope of the quizzes is way beyond the lecture material and
readings..Maybe lecture material and/or readings could more

closely align with the quiz questions, so that we are better
prepared.”

24

layers

application

HTTP, SSH, SMTP, ...

application-defined meanings

transport

TCP, UDP, ..

reach correct program,
reliablity /streams

network IPv4, IPv6, .. reach correct machine
(across networks)

link Ethernet, Wi-Fi, ... coordinate shared wire/radio

physical encode bits for wire/radio

25

layers

application

HTTP, SSH, SMTP, ...

application-defined meanings

transport

TCP, UDP, ..

reach correct program,
reliablity /streams

network IPv4, IPv6, .. reach correct machine
(across networks)

link Ethernet, Wi-Fi, ... coordinate shared wire/radio

physical encode bits for wire/radio

26

more than four layers?

sometimes more layers above ‘application’

e.g.

e.g.

e.g.

e.g.

HTTPS:
HTTP (app layer) on TLS (another app layer) on TCP (network) on ..

DNS over HTTPS:
DNS (app layer) on HTTP on on TLS on TCP on ...

SFTP:
SFTP (app layer??) on SSH (another app layer) on TCP on ..

HTTP over OpenVPN:
HTTP on TCP on IP on OpenVPN on UDP on different IP on ..

27

names and addresses

name address

logical identifier location /how to locate

variable counter memory address Ox7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36

DNS name mail.google.com IPv4 address 216.58.217.69

DNS name mail.google.com IPv6 address 2607: f8b0:4004:80b: :2005
DNS name reiss-t3620.cs.virginia.edu | IPv4 address 128.143.67.91

DNS name reiss-t3620.cs.virginia.edu | MAC address 18:66:da:2e:7f:da
service name https port number 443

service name ssh port number 22

28

layers

application

HTTP, SSH, SMTP, ...

application-defined meanings

transport

TCP, UDP, ..

reach correct program,
reliablity /streams

network IPv4, IPv6, .. reach correct machine
(across networks)

link Ethernet, Wi-Fi, ... coordinate shared wire/radio

physical encode bits for wire/radio

29

an Ethernet frame

4c

45

cO

80

19
c8

destination
MAC address
cc 6a ba 1c

00 00 60 db

a8 01 95 01

18 40 02 65

70 27 9e 17
b9 ab 81 50

b9

89

bb

fe

03
el

source

MAC address

d8 07 b6 d9

frame’s data
40 00 f2 06

aa c4 40 2b

00 00 01 01

03 00 27 00
ef 1la d8 97

ae

cf

dé

08

00
73

50

46

Oa

00
76

frame
type
08 00

34 60

7c 9d

03 83

00 00
9a ee

eb

15

98

00
33

a2

e4

62

00
da

30

an Ethernet frame

destination
MAC address
4c cc 6a ba 1c

length
vers.
45 00 00 60 db

destination
IPv4 address
cO a8 01 95 01

80 18 40 02 65

19 70 27 9e 17
c8 b9 ab 81 50

source
MAC address
b9 d8 07 b6 d9 ae

protocol
89 40 00 f2 06 cf

packet’s data
bb aa c4 40 2b d6

fe 00 00 01 01 08

03 03 00 27 OO0 006
e® ef 1a d8 97 73

50

46

Oa

00
76

frame
type
08 00

source
IPv4 address
34 60 e6 a2

7c 9d 15 e4

03 83 98 62

00 OO0 06 00
9a ee 33 d4

bpacket

30

an Ethernet frame

destination source frame
MAC address MAC address type
4c cc 6a ba 1c b9 d8 07 b6 d9 ae 50 08 00
source
length protocol IPv4 address

vers.
45 00 00 60 db 89 40 00 f2 06 cf cd 34 60 e6 a2

destination source dest.
IPv4 address port port sequence num.
cO a8 01 95 EOl bb aa c4 40 2b d6 46 7c 9d 15 e4

: Ppacket
:80 18 40 02 65 fe 00 00 01 01 08 Oa 03 83 98 62 TCP

segment’s data >segment
19 70 27 9e 17 03 03 00 27 00 00 00 00 00 00 00

‘c8 b9 ab 81 50 e® ef la d8 97 73 76 9a ee 33 d4 30

the link layer
Ethernet, Wi-Fi, Bluetooth, DOCSIS (cable modems), ..

allows send/recv messages to machines on “same” network
segment
typically: wireless range-+channel or connected to a single switch/router
could be larger (if bridging multiple network segments)
could be smaller (switch/router uses “virtual LANs")

typically: source+destination specified with MAC addresses
MAC = media access control
usually manufacturer assigned / hard-coded into device
unique address per port/wifi transmitter/etc.

can specify destination of “anyone” (called broadcast) .

link layer quality of service

if frame gets...

event on Ethernet on WiFi
collides with another detected + may resend | resend
not received lose silently resent

header corrupted

data corrupted

too long

reordered (v. other messages)
destination unknown

too much being sent

usually discard silently
usually discard silently
not allowed to send
received out of order
lose silently

discard excess?

usually resend
usually resend

not allowed to send
received out of order
usually resend??
discard excess?

32

link layer reliablity?

Ethernet + Wifi have checksums

Q1: Why doesn't this give us uncorrupted messages?
Why do we still have checksums at the higher layers?

Q2: What's a benefit of doing this if we're also doing it in the
higher layer?

33

layers

application

HTTP, SSH, SMTP, ...

application-defined meanings

transport

TCP, UDP, ..

reach correct program,
reliablity /streams

network IPv4, IPv6, .. reach correct machine
(across networks)

link Ethernet, Wi-Fi, ... coordinate shared wire/radio

physical encode bits for wire/radio

34

the network layer

the Internet Protocool (IP) version 4 or version 6
there are also others, but quite uncommon today

allows send messages to/recv messages from other networks
“internetwork”

messages usually called “packets”

35

network layer quality of service

if packet ...

event on IPv4/v6

collides with another out of scope — handled by link layer
not received lost silently

header corrupted

data corrupted

too long

reordered (v. other messages)
destination unknown

too much being sent

usually discarded silently

received corrupted

dropped with notice or “fragmented” + recombined
received out of order

usually dropped with notice

discard excess

36

network layer quality of service

if packet ...

event on IPv4/v6

collides with another out of scope — handled by link layer
not received lost silently

header corrupted
data corrupted
too long

reordered (v. other
destination unknown
too much being sent

usually discarded silently

received corrupted

dropped with notice or “fragmented” + recombined
received out of order

usually dropped with notice

discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

36

IPv4 addresses
32-bit numbers
typically written like 128.143.67.11

four 8-bit decimal values separated by dots
first part is most significant
same as 128 - 256° + 143 - 2562 + 67 - 256 + 11 = 2 156 782 459

organizations get blocks of IPs
e.g. UVa has 128.143.0.0-128.143.255.255
e.g. Google has 216.58.192.0-216.58.223.255 and
74.125.0.0-74.125.255.255 and 35.192.0.0-35.207.255.255

some IPs reserved for non-Internet use (127.*, 10.*, 192.168.*)

37

IPv6 addresses

IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)
strings of Os represented by double-colons (: :)
typically given to users in blocks of 2% or 254 addresses

no need for address translation?

2607:f8b0:400d:c00: :6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400dOCOOOOOOOOO0O000006asxTEEN

38

selected special IPvb addresses

::1 = localhost

anything starting with fe80 = link-local addresses
never forwarded by routers

39

IPv4 addresses and routing tables

router

anvthine else

if | receive data for.. send it to...
128.143.0.0—128.143.255.255 | network 1
192.107.102.0-192.107.102.255 | network 1
4.0.0.0-7.255.255.255 network 2
64.8.0.0-64.15.255.255 network 2

network 3

40

selected special IPv4 addresses

127.0.0.0 — 127.255.255.255 — localhost
AKA loopback
the machine we're on
typically only 127.0.0.1 is used

192.168.0.0-192.168.255.255 and
10.0.0.0-10.255.255.255 and
172.16.0.0-172.31.255.255
“private” IP addresses
not used on the Internet

commonly connected to Internet with network address translation
also 100.64.0.0-100.127.255.255 (but with restrictions)

169.254.0.0-169.254.255.255

link-local addresses — ‘never’ forwarded by routers 41

	layers preview
	layers, revisited
	addresses versus names
	a frame example
	ethernet / 802.11 / …
	exercise: why resend?

	IP
	IPv4 addresses
	IPv6 addresses
	routing idea
	special addresses

