
networking 2

1

so far
building programs — Makefiles for automation, dynamic libraries

hardware support for processes
kernel mode: operations for just the OS
exceptions: way (for hardware or software) to ask OS for help
context switches: switch active thread on processor
virtual memory: let OS choose where program’s memory goes

table of: virtual page → physical page

accounts and OS-enforced isolation
networking — layered implementation

simulating streams of data with messages
routing to connect local networks

2

last time (1)
common points of confusion re: page tables assignment

programming model in networking lab

networking layers

3

last time (2)
nesting layers

higher layers implemented on interface of below
sometimes more layering

addresses versus names
most addresses = numbers

link layer — local network
routing (network layer)

routing tables to know how to forward messages

port numbers (which program? transport layer)
UDP (transport without streams) v TCP (reliable streams)

4

lab tomorrow
code review

special-case permitted collaboration!

get/give suggestions for improving code
better organization
more readable
better style
pointing out potential problems you might not have seen

(not about others debugging/writing your code)

5

anonymous feedback (1)
“Myself as well as practically all of my friends in this course are extremely confused
and pretty much have no idea what is going on, despite attending lectures and
completing quizzes/homework assignments. It almost feels like we need a lecture to
just catch up and make sure everyone is on the same page with regards to
assignments and lecture content because we’re all confused, and it seems like we are
on an unsustainable path for the remainder of this semester.”

I can’t tell what such a “catch-up” lecture should cover
don’t want to give a lecture that reviews just the things that aren’t
confusing
lack of connection to high-level goals in each topic? lack of conclusion
for topics?
disconnect between assignments and lecture?
scattershot lectures from switching between review for pagetable
assignment and new material?

6

anonymous feedback (2)
“Today in class you mentioned that we needed to test our code in
parts and I was wondering how we would test page allocate? I am
not sure what we should expect as an output for memory.”
probably answering this too late to be useful

anonymous feedback isn’t good for quick answers

some ideas?
make parts of page_allocate into smaller functions that can be run
separately
add some counters or similar variables to track what page allocate does
and check those
examine ptbr afterwards and look up the value of a particular page table
entry (with locatoin hard-coded in test)
manually set ptbr to something and see what page allocate does to it
implement and test, for example, page_allocate(0)+translate(0) before
more complex cases

7

anonymous feedback (3)
“In office hours, TAs do not always know how to allocate time correctly. I saw one
TA help a student for over an hour on multiple assignments in one sitting. I ended
up leaving even after waiting an hour and a half in near-empty office hours. I
thought TAs were only supposed to allocate ∼10 minutes per student at a time. ”

definitely shouldn’t be happening to this extreme
some TAs report students not signing up on queue (whiteboard or
online) so TAs aren’t aware students need help — probably means
queue isn’t clear enough sometimes?

“Students should spend less time on asking questions in office hours. There’s lot’s
of occasions I come to office hours between my classes and normally won’t make it
before class. I’ve seen some students occupying TAs from 15 minutes up to 30
minutes+ and I feel like it is really selfish.”

probably supposed to be more TA’s job, but…
8

anonymous feedback (4)
“The professor speaks too fast to the point where I cannot make
out what he’s saying, even at 0.5x speed! It sounds like
mumbling/gibberish :(”

9

anonymous feedback (5)
“I appreciate how receptive you are to our prior knowledge and feedback! I know
this is the first time this class is being taught after the pilot and the ending of last
semester largely impacted what we actually know versus what we are expected to
know. It is nice to know how much you care about us and our success in this class.”

“I just wanted to say I really really appreciated the two graphs and the explanation
Professor Reiss gave during class on the 16th. I was really struggling getting my
pagetable code to work and the explanation and graphs made it a lot clearer for me
and helped a ton, I think thats definitely something that should be shown to future
classes during the initial lab writeup.”

10

anonymous feedback (6)
“While sockets were a part of the CSO curriculum, due to the
circumstances at the end of last semester, we didn’t really learn
them and the assignments related to sockets were
optional/dropped. With that in mind please review more before we
get into it to much <3”

“Due to the events of the latter half of last semester, we didn’t
cover sockets super well and in depth. It would be nice to have a
short refreshed in the beginning of class.”

11

talking with the terminal
printf("Name: ");
char input[1000];
fgets(input, sizeof input, stdin);
fprintf(logfile, "Got name %s\n", input);
printf("Enter command: ");
fgets(input, sizeof input, stdin);
...

12

talking with the terminal
printf("Name: ");
char input[1000];
fgets(input, sizeof input, stdin);
fprintf(logfile, "Got name %s\n", input);
printf("Enter command: ");
fgets(input, sizeof input, stdin);
...

12

talking with terminal w/ fread
/* missing below: error checking */
const char *msg = "Name: ";
fwrite(msg, 1, strlen(msg), stdout);

char input[1000] = ""; int count = 0;
do {

count += fread(input + count, 1, 1000 − count, stdin);
} while (!strchr(input, '\n') && count < 1000);
fprintf(logfile, "Got name %s\n", first_line_of(input));

msg = "Enter command: "; fwrite(msg, 1, strlen(msg), stdout);

strcpy(input, after_first_line_of(input)); count = strlen(input);
while (!strchr(input, '\n') && count < 1000) {

count += fread(input + count, 1, 1000 − count, stdin);
}
...

ugh, reading a line of input without fgets
and without doing 1 char at a time

is pretty annoying

13

talking with terminal w/ fread
/* missing below: error checking */
const char *msg = "Name: ";
fwrite(msg, 1, strlen(msg), stdout);

char input[1000] = ""; int count = 0;
do {

count += fread(input + count, 1, 1000 − count, stdin);
} while (!strchr(input, '\n') && count < 1000);
fprintf(logfile, "Got name %s\n", first_line_of(input));

msg = "Enter command: "; fwrite(msg, 1, strlen(msg), stdout);

strcpy(input, after_first_line_of(input)); count = strlen(input);
while (!strchr(input, '\n') && count < 1000) {

count += fread(input + count, 1, 1000 − count, stdin);
}
...

ugh, reading a line of input without fgets
and without doing 1 char at a time

is pretty annoying

13

talking with terminal w/ fread
/* missing below: error checking */
const char *msg = "Name: ";
fwrite(msg, 1, strlen(msg), stdout);

char input[1000] = ""; int count = 0;
do {

count += fread(input + count, 1, 1000 − count, stdin);
} while (!strchr(input, '\n') && count < 1000);
fprintf(logfile, "Got name %s\n", first_line_of(input));

msg = "Enter command: "; fwrite(msg, 1, strlen(msg), stdout);

strcpy(input, after_first_line_of(input)); count = strlen(input);
while (!strchr(input, '\n') && count < 1000) {

count += fread(input + count, 1, 1000 − count, stdin);
}
...

ugh, reading a line of input without fgets
and without doing 1 char at a time

is pretty annoying

13

using a connected socket
/* missing below: error checking */
int socket_fd = GetSocketFileDescriptorSomehow();
const char *msg = "Name: ";
write(socket_fd, msg, strlen(msg));

char input[1000]; int count = 0;
do {

count += read(socket_fd, input + count, 1000 − count);
} while (!strchr(input, '\n') && count < 1000);
fprintf(logfile, "Got name %s\n", first_line_of(input));

msg = "Enter command: "; write(socket_fd, msg, strlen(msg));

strcpy(input, after_first_line_of(input)); count = strlen(input);
while (!strchr(input, '\n') && count < 1000) {

count += read(socket_fd, input + count, 1000 − count);
}
... 14

using a connected socket
/* missing below: error checking */
int socket_fd = GetSocketFileDescriptorSomehow();
const char *msg = "Name: ";
write(socket_fd, msg, strlen(msg));

char input[1000]; int count = 0;
do {

count += read(socket_fd, input + count, 1000 − count);
} while (!strchr(input, '\n') && count < 1000);
fprintf(logfile, "Got name %s\n", first_line_of(input));

msg = "Enter command: "; write(socket_fd, msg, strlen(msg));

strcpy(input, after_first_line_of(input)); count = strlen(input);
while (!strchr(input, '\n') && count < 1000) {

count += read(socket_fd, input + count, 1000 − count);
}
... 14

using a connected socket
/* missing below: error checking */
int socket_fd = GetSocketFileDescriptorSomehow();
const char *msg = "Name: ";
write(socket_fd, msg, strlen(msg));

char input[1000]; int count = 0;
do {

count += read(socket_fd, input + count, 1000 − count);
} while (!strchr(input, '\n') && count < 1000);
fprintf(logfile, "Got name %s\n", first_line_of(input));

msg = "Enter command: "; write(socket_fd, msg, strlen(msg));

strcpy(input, after_first_line_of(input)); count = strlen(input);
while (!strchr(input, '\n') && count < 1000) {

count += read(socket_fd, input + count, 1000 − count);
}
... 14

using a connected socket
/* missing below: error checking */
int socket_fd = GetSocketFileDescriptorSomehow();
const char *msg = "Name: ";
write(socket_fd, msg, strlen(msg));

char input[1000]; int count = 0;
do {

count += read(socket_fd, input + count, 1000 − count);
} while (!strchr(input, '\n') && count < 1000);
fprintf(logfile, "Got name %s\n", first_line_of(input));

msg = "Enter command: "; write(socket_fd, msg, strlen(msg));

strcpy(input, after_first_line_of(input)); count = strlen(input);
while (!strchr(input, '\n') && count < 1000) {

count += read(socket_fd, input + count, 1000 − count);
}
... 14

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)
(rarely) bind(fd, addr, …)

socket() function — create socket file descriptor
file descriptor = number that identifies a open file
(like a FILE *, but for Unix system calls)

bind() — set local port number
and maybe IP address to use
if not done, OS chooses port number

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection
client+server “read” and “write”

15

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)
(rarely) bind(fd, addr, …)

socket() function — create socket file descriptor
file descriptor = number that identifies a open file
(like a FILE *, but for Unix system calls)

bind() — set local port number
and maybe IP address to use
if not done, OS chooses port number

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection
client+server “read” and “write”

15

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)
(rarely) bind(fd, addr, …)

socket() function — create socket file descriptor
file descriptor = number that identifies a open file
(like a FILE *, but for Unix system calls)

bind() — set local port number
and maybe IP address to use
if not done, OS chooses port number

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection
client+server “read” and “write”

15

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)
(rarely) bind(fd, addr, …)

socket() function — create socket file descriptor
file descriptor = number that identifies a open file
(like a FILE *, but for Unix system calls)

bind() — set local port number
and maybe IP address to use
if not done, OS chooses port number

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection
client+server “read” and “write”

15

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)
(rarely) bind(fd, addr, …)

socket() function — create socket file descriptor
file descriptor = number that identifies a open file
(like a FILE *, but for Unix system calls)

bind() — set local port number
and maybe IP address to use
if not done, OS chooses port number

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection
client+server “read” and “write”

15

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)
(rarely) bind(fd, addr, …)

socket() function — create socket file descriptor
file descriptor = number that identifies a open file
(like a FILE *, but for Unix system calls)

bind() — set local port number
and maybe IP address to use
if not done, OS chooses port number

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

client+server “read” and “write”

15

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)
(rarely) bind(fd, addr, …)

socket() function — create socket file descriptor
file descriptor = number that identifies a open file
(like a FILE *, but for Unix system calls)

bind() — set local port number
and maybe IP address to use
if not done, OS chooses port number

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

requ
est c

onne
ction

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection
client+server “read” and “write”

15

layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

16

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

17

layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

18

UDP v TCP
TCP: stream to other program

reliable transmission of as much data as you want
“connecting” fails if server not responding
write(fd, ”a”, 1); write(fd, ”b”, 1) = write(fd, ”ab”, 2)
(at least) one socket per remote program being talked to

UDP: messages sent to program, but no reliablity/streams
unreliable transmission of short messages
write(fd, ”a”, 1); write(fd, ”b”, 1) 6= write(fd, ”ab”, 2)
“connecting” just sets default destination
can sendto()/recvfrom() multiple other programs with one socket

(but don’t have to)

19

‘connected’ UDP sockets
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
bind(fd, &my_addr, sizeof(my_addr))
struct sockaddr_in to_addr = ...;
connect(fd, &to_addr); /* set remote IP address + port */

/* doesn't actually communicate with remote address yet */
...
int count = write(fd, data, data_size);
// OR
int count = send(fd, data, data_size, 0 /* flags */);

/* single message -- sent ALL AT ONCE */

int count = read(fd, buffer, buffer_size);
// OR
int count = recv(fd, buffer, buffer_size, 0 /* flags */);

/* receives whole single message ALL AT ONCE */
20

UDP sockets on IPv4
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
if (0 != bind(fd, &my_addr, sizeof(my_addr)))

handle_error();
...
struct sockaddr_in to_addr = ...;

/* send a message to specific address */
int bytes_sent = sendto(fd, data, data_size, 0 /* flags */,

&to_addr, sizeof(to_addr));

struct sockaddr_in from_addr = ...;
/* receive a message + learn where it came from */

int bytes_recvd = recvfrom(fd, &buffer[0], buffer_size, 0,
&from_addr, sizeof(from_addr));

...

21

finding the read()
when message comes in,
how does OS know which read()/recv()/recvfrom() call
its for?

22

connections in TCP/IP
connection identified by 5-tuple

used by OS to lookup “where is the socket?”

(protocol=TCP/UDP, local IP addr., local port, remote IP addr., remote port)

local IP address, port number can be set with bind() function
typically always done for servers, not done for clients
system will choose default if you don’t

23

connections on my desktop
cr4bd@reiss−t3620>/u/cr4bd
$ netstat −−inet −−inet6 −−numeric
Active Internet connections (w/o servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 128 . 143 . 67 . 91 : 49202 128 . 1 4 3 . 6 3 . 3 4 : 2 2 ESTABLISHED
tcp 0 0 128 . 1 43 . 6 7 . 9 1 : 8 03 128 . 143 . 67 . 236 : 2049 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 50292 128 . 1 43 . 6 7 . 2 26 : 2 2 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54722 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 52002 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 128 . 1 43 . 6 7 . 9 1 : 7 32 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 40664 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54098 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 49302 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 50236 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 128 . 1 4 3 . 6 7 . 9 1 : 2 2 172 . 2 7 . 9 8 . 2 0 : 4 9566 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 51000 128 . 1 43 . 6 7 . 2 36 : 1 11 TIME_WAIT
tcp 0 0 127 . 0 . 0 . 1 : 5 0 4 3 8 1 2 7 . 0 . 0 . 1 : 6 3 1 ESTABLISHED
tcp 0 0 1 2 7 . 0 . 0 . 1 : 6 3 1 1 27 . 0 . 0 . 1 : 5 0 4 3 8 ESTABLISHED

24

non-connection sockets
TCP servers waiting for connections +
UDP sockets with no particular remote host

Linux: OS keeps 5-tuple with “wildcard” remote address

25

“listening” sockets on my desktop
cr4bd@reiss−t3620>/u/cr4bd
$ netstat −−inet −−inet6 −−numeric −−listen
Active Internet connections (only servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 127 . 0 . 0 . 1 : 3 8 5 3 7 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 3 6 7 7 7 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 0 . 0 . 0 . 0 : 4 1 0 9 9 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 0 . 0 . 0 . 0 : 4 5 2 9 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 5 1 9 4 9 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 4 1 0 7 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 0 . 0 . 0 . 0 : 1 1 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 3 2 8 8 1 0 . 0 . 0 . 0 : * LISTEN
tcp 0 0 127 . 0 . 0 . 1 : 3 8 6 7 3 0 . 0 . 0 . 0 : * LISTEN
. . . .
tcp6 0 0 : : : 4 2 6 8 9 : : : * LISTEN
udp 0 0 128 . 143 . 67 . 91 : 60001 0 . 0 . 0 . 0 : *
udp 0 0 128 . 143 . 67 . 91 : 60002 0 . 0 . 0 . 0 : *
. . .
udp6 0 0 : : : 5 9 9 3 8 : : : *

26

TCP state machine
TIME_WAIT, ESTABLISHED, …?

OS tracks “state” of TCP connection
am I just starting the connection?
is other end ready to get data?
am I trying to close the connection?
do I need to resend something?

standardized set of state names

27

TIME_WAIT
remember delayed messages?

problem for TCP ports

if I reuse port number, I can get message from old connection

solution: TIME_WAIT to make sure connection really done
done after sending last message in connection

28

TCP state machine picture

via Wikimedia/User:Scil100; CC-BY-SA 29

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

30

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

32

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

33

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

34

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

35

DNS time-to-live
don’t want DNS entries cached forever

solution: time-to-live

“www.cs.virginia.edu is 128.148.67.11 for next 86400 seconds”

36

DNS exercise (1)
“www.cs.virginia.edu is 128.148.67.11 for next 86400 seconds”

(given record above) if sysadmin changes IP address DNS server
returns for www.cs.virginia.edu, then what will happen to machines
accessing website?

A. they’ll start using the new address after 86400 seconds, and use the
old one before then.
B. different machines will use the new address at different times, but no
longer than 86400 seconds from when it changes
C. machines will start using the new address almost immediately, but
after some small delay after it is changed
D. machines may keep using the old address until they are rebooted
E. something else?

37

DNS exercise (2)
if sysadmin wants to change the IP address of www.cs.virginia.edu,
how do they do this without downtime?

they can change the IP address the server returns and/or the
time-to-live?

what should they change and when to smoothly transition to a new
address?

38

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

39

two types of addresses?
MAC addreses: on link layer

IP addresses: on network layer

how do we know which MAC address to use?

40

a table on my desktop
my desktop:

$ arp -an
? (128.143.67.140) at 3c:e1:a1:18:bd:5f [ether] on enp0s31f6
? (128.143.67.236) at <incomplete> on enp0s31f6
? (128.143.67.11) at 30:e1:71:5f:39:10 [ether] on enp0s31f6
? (128.143.67.92) at <incomplete> on enp0s31f6
? (128.143.67.5) at d4:be:d9:b0:99:d1 [ether] on enp0s31f6

…
network address to link-layer address + interface

only tracks things directly connected to my local network

41

how is that table made?
ask all machines on local network (same switch)

“Who has 128.148.67.140”

the correct one replies

42

what about non-local machines?
when configuring network specify:

range of addresses to expect on local network
128.148.67.0-128.148.67.255 on my desktop
“netmask”

gateway machine to send to for things outside my local network
128.143.67.1 on my desktop
my desktop looks up the corresponding MAC address

43

routes on my desktop
$ /sbin/route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 128.143.67.1 0.0.0.0 UG 100 0 0 enp0s31f6
128.143.67.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s31f6
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 enp0s31f6

network configuration says:

(line 2) to get to 128.143.67.0–128.143.67.255, send directly on
local network

“genmask” is mask (for bitwise operations) to specify how big range is

(line 3) to get to 169.254.0.0–169.254.255.255, send directly on
local network
(line 1) to get anywhere else, use “gateway” 128.143.67.1 44

URL / URIs
Uniform Resource Locators (URL)

tells how to find “resource” on network

Unifrom Resources Identifiers
superset of URLs

45

URI examples
https://kytos02.cs.virginia.edu:443/cs3130-spring2023/

quizzes/quiz.php?qid=02#q2

https://kytos02.cs.virginia.edu/cs3130-spring2023/
quizzes/quiz.php?qid=02

https://www.cs.virginia.edu/

sftp://cr4bd@portal.cs.virginia.edu/u/cr4bd/file.txt

tel:+1-434-982-2200

//www.cs.virginia.edu/~cr4bd/3130/S2023/
/~cr4bd/3130/S2023

scheme and/or host implied from context 46

URI generally
scheme://authority/path?query#fragment
scheme: — what protocol
//authority/

authoirty = user@host:port OR host:port OR user@host OR host

path
which resource

?query — usually key/value pairs
#fragment — place in resource

most components (sometimes) optional
47

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80

exercise: why include the Host there?

48

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80

exercise: why include the Host there?

48

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80
exercise: why include the Host there?

48

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

49

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

49

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

49

DHCP high-level
protocol done over UDP

but since we don’t have IP address yet, use 0.0.0.0

and since we don’t know server address, use 255.255.255.255
= “everyone on the local network”

local server replies to request with address + time limit

later: can send messages to local server to renew/give up address

50

DHCP high-level
protocol done over UDP

but since we don’t have IP address yet, use 0.0.0.0

and since we don’t know server address, use 255.255.255.255
= “everyone on the local network”

local server replies to request with address + time limit

later: can send messages to local server to renew/give up address

50

exercise: why time limit?
DHCP “lease”

rather than getting address forever

but DHCP has way of releasing taken address

why impose a time limit

51

network address translation
IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for machines

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

52

implementing NAT
remote host + port outside local port number inside IP inside port number
128.148.17.3:443 54033 192.168.1.5 43222
11.7.17.3:443 53037 192.168.1.5 33212
128.148.31.2:22 54032 192.168.1.37 43010
128.148.17.3:443 63039 192.168.1.37 32132

table of the translations
need to update as new connections made

53

NAT and layers
previously: network layer responsible for get to right machine

now: network + transport layer
because we use port numbers

also, NAT needs to know about connections (transport layer)
to know how to setup/remove table entries

54

backup slides

55

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers

think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

56

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

56

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

56

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

57

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

57

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

57

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

57

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

57

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

58

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

58

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

58

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

59

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

59

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

59

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

59

connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

60

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

61

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

61

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

61

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

61

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

62

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

62

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

62

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

62

writing files?
write(file, "H", 1);
write(file, "i", 1);
write(file, "\n", 1);

write(file, "Hi\n", 3);

with files/the terminal: both do the same thing
can read back result in same way

also: don’t need to worry about data being lost/reordered

stream sockets: same kind of interface

63

alternative: datagram
alternative: datagram sockets

send “datagrams”
individual messages
if too long — too bad
can be lost/corrupted/etc.

interface for using UDP

64

	so far
	last time
	using a connected socket
	setting up sockets

	layers preview
	addresses versus names
	TCP/UDP
	UDP v TCP
	UDP sockets
	OS tracking connections
	aside: TCP state machine

	DNS
	DNS: dig +trace
	exercise: changing server

	ARP / IPv6 ND
	URLs and URIs
	and HTTP? (exercise)
	DHCP and IPv6 autoconfig
	backup slides
	port numbers
	connection setup (more complete)
	client/getaddrinfo
	server/getaddrinfo
	client/manual
	server/manual

	stream v datagram

