
1

changelog
24 Feb 2023: using? for digital signatures: fix key in V to be public
key

24 Feb 2023: certificate idea: correctly identify what private key A
signs with

24 Feb 2023: actually do above updates after incompletely doing
them the first time

2

last time
(review of?) sockets

read()/write() interface
bind() (set address); listen()+accept()/connect()

UDP sockets
tracking connections → file descriptors
domain name system

hierarchical database; caching

URIs
mapping link-layer to network-layer addresses
address discovery — DHCP

briefly: network address translation
3

anonymous feedback — quizzes (1)
“I love this class being my 6th HSS elective. Why are these quizzes
more similar to a section from the SAT’s reading section than
quizzes from a CS class.”

“Would we be able to move the quizzes until after the homework
and/or labs? I feel I understand the topic much better after those
but generally the quizzes are harder to understand since we have
little to no experience with them by the point we take them.”

there will be times when we don’t do assignment until week+ after
lecture coverage

(based on my guesses about post-Spring-break scheduling and making sure I have
time if lecture goes slowly)

think I’m getting lots of complaints either way

4

anonymous feedback — last quiz
“We were given conflicting information for solving the first question
on the quiz. One slides suggests that we should multiply the 12
most significant bits of the given 0x1231 with 8(the page size), but
the example we did during class suggests we never implement this
step. As a result, I had two answers for that quiz question, namely
0x9180 and 0x1230. I feel that partial credit should be given for
said question.”

the page size in the quiz question was 16 bytes (= 8 PTEs)
…so the page size to multiply by was 16
in the example in lecture, PTEs were 1 byte —
so as a special case page size in bytes = page size in PTEs

5

anonymous feedback — OH waits
“In OH [TA name] spent 30+ minutes helping the same student
after two new students had written their names on the whiteboard.”

6

anonymous feedback — HW due time
“Can the assignments (not labs) be due at 11:59pm on the day it’s
due?”

7

network address translation
IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for machines

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

8

implementing NAT
remote host + port outside local port number inside IP inside port number
128.148.17.3:443 54033 192.168.1.5 43222
11.7.17.3:443 53037 192.168.1.5 33212
128.148.31.2:22 54032 192.168.1.37 43010
128.148.17.3:443 63039 192.168.1.37 32132

table of the translations
need to update as new connections made

9

NAT and layers
previously: network layer responsible for get to right machine

now: network + transport layer
because we use port numbers

also, NAT needs to know about connections (transport layer)
to know how to setup/remove table entries

10

secure communication context
“secure” communication

mostly talk about on network

between principals ≈ people/servers/programs

but same ideas apply to, e.g., messages on disk
communicating with yourself

11

A to B
running example: A talking with B

maybe sometimes also with C

attacker E — eavesdropper
passive
gets to read all messages over network

attacker M (man-in-the-middle)
active
gets to read and replace and add messages on the network

12

privileged network position
intercept radio signal?

control local wifi router?
may doesn’t just forward messages

compromise network equipment?

send packets with ‘wrong’ source address
called “spoofing”

fool DNS servers to ‘steal ’name?

fool routers to send you other’s data?

13

possible security properties? (1)
what we’ll talk about:

confidentiality — information shared only with those who should
have it

authenticity — message genuinely comes from right principal (and
not manipulated)

14

possible security properties? (2)
important ones we won’t talk about…:

repudiation — if A sends message to B, B can’t prove to C it came
from A

(takes extra effort to get along with authenticity)

forward-secrecy — if A compromised now, E can’t use that to
decode past conversations with B

anonymity — A can talk to B without B knowing who it is

…

15

secrets
if A is talking to B are communicating,
what stops M from pretending to be B?

assumption: B knows some secret information that M does not

start: assume A and B have a shared secret they both know
(and M, E do not)

(later: easier to setup assumptions)

16

secrets
if A is talking to B are communicating,
what stops M from pretending to be B?

assumption: B knows some secret information that M does not

start: assume A and B have a shared secret they both know
(and M, E do not)

(later: easier to setup assumptions)

16

bad ways to use shared secret
A → B: What’s the password?

B → A: It’s ‘AbcxyMe’.

A → B: That’s right! Here’s my confidential information.

well, this doesn’t really help:
against E, who can read the password AND confidential info
against M, who can also pretend to be A for B

17

bad ways to use shared secret
A → B: What’s the password?

B → A: It’s ‘AbcxyMe’.

A → B: That’s right! Here’s my confidential information.

well, this doesn’t really help:
against E, who can read the password AND confidential info
against M, who can also pretend to be A for B

17

symmetric encryption
some magic math!

we’ll be given two functions by expert:
encrypt: E(key,message) = ciphertext
decrypt: D(key, ciphertext) = message

key = shared secret
ideally small (easy to share) and chosen at random
unsolved problem: how to share it?

18

symmetric encryption properties (1)
our functions:

encrypt: E(key,message) = ciphertext
decrypt: D(key, ciphertext) = message

knowing E and D, it should be hard to
learn anything about the message from the ciphertext without key

“hard” ≈ would have to try every possible key

19

symmetric encryption properties (1)
our functions:

encrypt: E(key,message) = ciphertext
decrypt: D(key, ciphertext) = message

knowing E and D, it should be hard to
learn anything about the message from the ciphertext without key

“hard” ≈ would have to try every possible key

19

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 20

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 20

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 20

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 20

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 20

using?
in advance: A and B share encryption key

A computes E(key, ‘The secret formula is…’) = ***

send on network:
A → B: ***

B computes D(key, ***) = ‘The secret formula is …’

21

using?
in advance: A and B share encryption key

A computes E(key, ‘The secret formula is…’) = ***

send on network:
A → B: ***

B computes D(key, ***) = ‘The secret formula is …’

21

encryption is not enough
if B receives an encrypted message from A, and…

it makes sense when decrypted, why isn’t that good enough?

problem: an active attacker M
can selectively manipulate the encrypted message

22

manipulating encrypted data?
one example: common symmetric encryption approach:

use random number + shared secret to…
produce sequence of hard-to-guess bits xi as long as the message
produce ciphertext with xor: ci = mi ⊕ xi

message = m0m1m2 . . .; ciphertext = [random number]c0c1c2 . . .

means that flipping ci flips bit mi

also means that we can shorten messages silently

23

manipulating messages
as an active attacker

if we know part of plaintext
can sometimes make it read anything else by flipping bits

“Pay $100 to Bob” → “Pay $999 to Bob”

we can shorten
“Pay $100 to ABC Corp if they …” → “Pay $100 to ABC Corp”

we can corrupt selected parts of message and check the response is
e.g. what changes don’t make B reject message as malformed?

24

message authentication codes (MACs)
goal: use shared secret key to verify message origin

one function: MAC(key,message) = tag

knowing MAC and the message and the tag, it should be hard to:
find the value of MAC(key, other message) — (“forge” the tag)
find the key

25

contrast: MAC v checksum
message authentication code acts like checksum, but…

checksum can be recomputed without any key

checksum meant to protect against accidents, not malicious
attacks

checksum can be faster to compute + shorter

26

using without encryption?
in advance: choose + share MAC key

A prepares message:
A computes ‘Please pay $100 to M.’
A computes MAC(MAC key, ‘Please pay $100 to M.’) = @@@

A → B: Please pay $100 to M. @@@

B processes message:
B recomputes MAC(MAC key, ‘Please pay $100 to M.’)
rejects if it doesn’t match @@@

27

using without encryption?
in advance: choose + share MAC key

A prepares message:
A computes ‘Please pay $100 to M.’
A computes MAC(MAC key, ‘Please pay $100 to M.’) = @@@

A → B: Please pay $100 to M. @@@

B processes message:
B recomputes MAC(MAC key, ‘Please pay $100 to M.’)
rejects if it doesn’t match @@@

27

using with encryption?
in advance: choose + share encryption key and MAC key

A prepares message:
A computes E(encrypt key, ‘The secret formula is…’) = ***
A computes MAC(MAC key, ***) = @@@

A → B: *** @@@

B processes message:
B recomputes MAC(MAC key, ***)
rejects if it doesn’t match @@@
B computes D(key, ***) = ‘The secret formula is …’

28

using with encryption?
in advance: choose + share encryption key and MAC key

A prepares message:
A computes E(encrypt key, ‘The secret formula is…’) = ***
A computes MAC(MAC key, ***) = @@@

A → B: *** @@@

B processes message:
B recomputes MAC(MAC key, ***)
rejects if it doesn’t match @@@
B computes D(key, ***) = ‘The secret formula is …’

28

“authenticated encryption”
often encryption + MAC packaged together

name: authenticated encryption

29

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

30

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

30

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

30

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

31

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

31

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

31

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

31

asymmetric encryption
we’ll have two functions:

encrypt: PE(public key,message) = ciphertext
decrypt: PD(private key, ciphertext) = message

(public key, private key) = “key pair”

32

key pairs
‘private key’ = kept secret

usually not shared with anyone

‘public key’ = safe to give to everyone
usually some hard-to-reverse function of public key

concept will appear in some other cryptographic primitives

33

asymmetric encryption properties
functions:

encrypt: PE(public key,message) = ciphertext
decrypt: PD(private key, ciphertext) = message

should have:
knowing PE, PD, the public key, and ciphertext shouldn’t make it too
easy to find message
knowing PE, PD, the public key, ciphertext, and message shouldn’t
help in finding private key

34

secrecy properties with asymmetric
not going to be able to make things as hard as “try every possibly
private key”

but going to make it impractical

like with symmetric encryption want to prevent recovery of any info
about message

also have some other attacks to worry about:
e.g. no info about key should be revealed based on our reactions to
decrypting maliciously chosen ciphertexts

35

using asymmetric v symmetric
both:

use secret data to generate key(s)

asymmetric (AKA public-key) encryption
one “keypair” per recipient
private key kept by recipient
public key sent to all potential senders
encryption is one-way without private key

symmetric encryption
one key per (recipient + sender)
secret key kept by recipient + sender
if you can encrypt, you can decrypt

36

public keys
public key used to encrypt

can share this with everyone!

private key used to decrypt

kept secret
don’t even share with people sending us messages

37

using?
in advance: B generates private key + public key

in advance: B sends public key to A (and maybe others) securely

A computes PE(public key, ‘The secret formula is…’) = *******

send on network:
A → B: ********

B computes PD(private key, *******) = ‘The secret formula is …’

38

digital signatures
symmetric encryption : asymetric encryption ::
message authentication codes : digital signatures

39

digital signatures
pair of functions:

sign: S(private key,message) = signature
verify: V (public key, signature,message) = 1 (“yes, correct signature”)

(public key, private key) = key pair (similar to asymmetric
encryption)

public key can be shared with everyone
knowing S, V , public key, message, signature
doesn’t make it too easy to find another message + signature so that
V (public key, other message, other signature) = 1

40

using?
in advance: A generates private key + public key

in advance: A sends public key to B (and maybe others) securely

A computes S(private key, ‘Please pay ...’) = *******

send on network:
A → B: ‘I authorize the payment’, ********

B computes V (public key, ‘Please pay ...’, *******) = 1

41

tools, but...
have building blocks, but less than straightforward to use

lots of issues from using building blocks poorly

start of art solution: formal proof sytems

42

replay attacks
A→B: Did you order lunch? [signature 1 by A]

signature 1 by A = Sign(A’s private signing key, “Did you order lunch?”)
will check with Verify(A’s public key, signature 1 by A, “Did you order
lunch?”)

B→A: Yes. [signature 1 by B]
signature 1 by B = Sign(B’s private key, “Yes.”)
will check with Verify(B’s public key, signature 1 by B, “Yes.”)

A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature by A]

so attacker can’t manipulate/forge messages, everything’s okay?

43

replay attacks
A→B: Did you order lunch? [signature 1 by A]
B→A: Yes. [signature 1 by B]
A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “Yes.”, signature 2 from B) = 1

44

replay attacks
A→B: Did you order lunch? [signature 1 by A]
B→A: Yes. [signature 1 by B]
A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “Yes.”, signature 2 from B) = 1 44

nonces (1)
one solution to replay attacks:
A→B: #1 Did you order lunch? [signature 1 from A]

signature from A = Sign(A’s private key, “#1 Did you order lunch?”)

B→A: #1 Yes. [signature 1 from B]
A→B: #2 Vegetarian? [signature 2 from A]
B→A: #2 No, not this time. [signature 2 from B]
…
A→B: #54 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? from A]

(assuming A actually checks the numbers)
45

nonces (2)
another solution to replay attacks:
B→A: [next number #91523] [signature from B]
A→B: #91523 Did you order lunch? [next number #90382]
[signature from A]
B→A: #90382 Yes. [next number #14578] [signature from B]
…
A→B: #6824 There’s a guy at the door, says he’s here to repair
the AC. Should I let him in? [next number #36129][signature from
A]

(assuming A actually checks the numbers)
46

replay attacks (alt)
M→B: #50 Did you order lunch? [signature by M]
B→M: #50 Yes. [signature intended for M by B]
A→B: #50 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? by A]

how can M hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “#50 Yes.”, signature intended for M by B) = 1

47

replay attacks (alt)
M→B: #50 Did you order lunch? [signature by M]
B→M: #50 Yes. [signature intended for M by B]
A→B: #50 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? by A]

how can M hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “#50 Yes.”, signature intended for M by B) = 1

47

confusion about who’s sending?
in addition to nonces, either

write down more who is sending + other context so message can’t be
reused and/or
use unique set of keys for each principal you’re talking to

with symmetric encryption, also “reflection attacks”
A sends message to B, attacker sends A’s message back to A as if it’s
from B

48

other attacks without breaking math

49

TLS state machine attack
from https://mitls.org/pages/attacks/SMACK

protocol:
step 1: verify server identity
step 2: receive messages from server

attack:
if server sends “here’s your next message”,
instead of “here’s my identity”
then broken client ignores verifying server’s identity

50

https://mitls.org/pages/attacks/SMACK

Matrix vulnerabilties
one example from https://nebuchadnezzar-megolm.
github.io/static/paper.pdf

system for confidential multi-user chat

protocol + goals:
each device (my phone, my desktop) has public key
to talk to me, you verify one of my public keys
to add devices, my client can forward my other devices’ public keys

bug:
when receiving new keys, clients did not check who they were forwarded
from correctly

51

https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf

on the lab

52

getting public keys?
browser talking to websites
needs public keys of every single website?

not really feasible, but…

53

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can send C:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

54

certificate authorities
instead, have public keys of trusted certificate authorities

only 10s of them, probably

websites go to certificates authorities with their public key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

these signed messages called “certificates”

55

example web certificate (1)
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

81:13:c9:49:90:8c:81:bf:94:35:22:cf:e0:25:20:33
Signature Algorithm: sha256WithRSAEncryption
Issuer:

commonName = InCommon RSA Server CA
organizationalUnitName = InCommon
organizationName = Internet2
localityName = Ann Arbor
stateOrProvinceName = MI
countryName = US

Validity
Not Before: Feb 28 00:00:00 2022 GMT
Not After : Feb 28 23:59:59 2023 GMT

Subject:
commonName = collab.its.virginia.edu
organizationalUnitName = Information Technology and Communication
organizationName = University of Virginia
stateOrProvinceName = Virginia
countryName = US

..... 56

example web certificate (1)
Certificate:

Data:
....

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:f4:e4:d4:6c:
94:be:91:a8:6a:21:43:b2:d5:9a:48:b0:64:d9:f7:
f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:f6:46:4b:42:

....
X509v3 extensions:

....
X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication
....

X509v3 Subject Alternative Name:
DNS:collab.its.virginia.edu
DNS:collab-prod.its.virginia.edu
DNS:collab.itc.virginia.edu

Signature Algorithm: sha256WithRSAEncryption
39:70:70:77:2d:4d:0d:0a:6d:d5:d1:f5:0e:4c:e3:56:4e:31:

.... 57

certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority

so their public key, comes with my OS/browser?
not exactly…

they have their own certificate signed by “USERTrust RSA
Certification Authority”
and their public key comes with your OS/browser?

(but both CAs now operated by UK-based Sectigo)
58

public-key infrastructure
ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure”

several of these:
for verifying identity of websites
for verifying origin of domain name records (kind-of)
for verifying origin of applications in some OSes/app stores/etc.
for encrypted email in some organizations
…

59

backup slides

60

	attackers and security properties
	security properties
	tools with shared keys
	secrets generally
	symmetric encryption
	motivation: need for authentication
	message authentication codes

	motivation: distributing shared secrets?
	tools without shared keys
	asymmetric encryption
	digital signatures

	encryption + authentication pitfalls
	replay attacks
	other attacks

	on the lab
	certificate authorities
	backup slides

