
1

so far
building programs — Makefiles for automation, dynamic libraries

hardware support for processes
kernel mode, exceptions, context switches
virtual memory: let OS choose where program’s memory goes

accounts and OS-enforced isolation

networking — layered implementation
simulating streams of data / routing

secure communication

2

last time (1)
confidentiality / authenticity

need for secret information

working with shared secrets
symmetric encryption (confidentiality)
message authentication code (authenticity, kind-of)

asymmetric schemes
public/private keypairs
asymmetric encryption
digital signatures

3

last time (2)
replay and machine-in-the-middle attacks

need for secure initial communication

partial workaround 1: public keys (broadcast)

partial workaround 2: certificates (forwarding keys)

4

anonymous feedback (1)
“The next time you teach this class you should release the working
code for each part after it’s due. This assignment is literally just a
way to make students who had something come up anytime in the
past 3 weeks fail this class. Trying to make a multilevel page table
work when my code for LEVELS =1 barely works is so horrible. ”

getting LEVELS = 1 work + README/Makefile/etc. should be enough
partial credit that ‘fail this class’ isn’t a likely direct result
(third submission is worth more, but this is mostly deferred grading of
stuff that should’ve been done on early submissions)

a lot of the assignment is about organizing your code/etc. — doesn’t
work so well when we give code
I’m not sure spending time understanding our LEVELS = 1 solution
would’ve saved students much time overall

5

anonymous feedback (2)
“Hi! I was wondering if it would be possible at the end of the
lectures to take like 3-5 minutes to just review everything that you
covered in the lecture just because a lot happens in the 75 minute
period and sometimes it can be helpful to be like, okay these were
the topics that were covered, these are the ones that I understand,
these are the ones that are confusing and I need to work on. I
know you go over what we learned last class at the beginning of
the period but I think it would be much more helpful to have that
check in when the information is fresh in our heads.”

not being certain where I’m going to end lecture makes this tricky on a
lecture-by-lecture basis
probably better to do topic-by-topic summaries? (which I haven’t
been…)

6

anonymous feedback (3)
“I just wanted to say that I’m a huge fan of your use of the anonymous feedback
tool, and am extremely appreciative of your willingness to continue improving as a
lecturer for the benefit of the students. I will say, though, that at times it might
seem like you take the perspective of a single student a bit too seriously, so if
possible, it would be nice if there was some sort of anonymous ”upvote/downvote”
feature, so that the overall class population could validate specific concerns. I
recognize though, that the backend implementation might be difficult, so perhaps
it’s just a suggestion for future semesters…”

7

anonymous feedback (4)
“I think the weekly quizzes are way too confusing. It takes me hours to do one quiz
because I have to rewatch the lectures to help me answer the questions. After
watching the lectures and reading the readings, I’m still very unsure about what the
correct answer is. Is this supposed to be the case? I feel like the readings and the
lectures are too vague and general to be helpful in answering some of the quiz
questions. Also some of the answer choices are worded so confusingly I spend most
of the time trying to understand what it is saying. I wish the quizzes were more
straightforward. If the current expectation of the quizzes is to gauge understanding,
then I am never understanding what is going on - even though I feel like I
understand the content in the lectures.”

I do expect that review of material will be needed
do hope questions about things actually too vague in lecture, etc.
question clarity — obviously, I try but sometimes unintended
second/third interpretations

hope comments field mitigates that somewhat 8

anonymous feedback (5)
“Bejoy and Andrew were super helpful in OH and did a good job of
managing the students and the queue.”

9

quiz Q1
UDP sockets

write: FIRST; then SECOND; then THIRD

read: ?, ?, ?

UDP sends messages (datagrams), not stream of bytes

will read whole messages only
not parts of messages, multiple messages at once

can read in any order, can lose messages on network (after sent)

10

quiz Q3
each ISP’s DNS server caches IP address, so…

at most 1 query from each ISP’s server every 10000 seconds

10000 seconds = 2.8 hours

so 2 queries per server of 5 hours = 20 queries

11

quiz Q4
A + B commmunicating with each other + others using public key
encryption + digital signatures

they need: their own private keys + each other’s public keys

should not have each other’s private keys — would let A read
messages from third-parties for B
don’t need other things — not useful if using these public keys

(yes, could use shared secret for symmetric encryption, but that wasn’t
the plan…)
(yes, could have message signed by B containing B’s public key, but not
really useful since we need that key to verify the signature anyways)

12

quiz Q5
S → U : N
U → S: MAC(key, N + password), command

did not require thing passed to MAC contained command
so attacker can manipulate while on network
yes, that would be a good idea, but our specification didn’t say to do it

did require that N is one-time
so attacker can’t reuse MAC(key, N + password) later

did ‘encode’ password with MAC(key, N + password), but…
MAC should not reveal information about N + password without key
attackers won’t have key

13

getting public keys?
browser talking to websites
needs public keys of every single website?

not really feasible, but…

14

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can send C:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

15

certificate authorities
instead, have public keys of trusted certificate authorities

only 10s of them, probably

websites go to certificates authorities with their public key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

these signed messages called “certificates”

16

example web certificate (1)
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

81:13:c9:49:90:8c:81:bf:94:35:22:cf:e0:25:20:33
Signature Algorithm: sha256WithRSAEncryption
Issuer:

commonName = InCommon RSA Server CA
organizationalUnitName = InCommon
organizationName = Internet2
localityName = Ann Arbor
stateOrProvinceName = MI
countryName = US

Validity
Not Before: Feb 28 00:00:00 2022 GMT
Not After : Feb 28 23:59:59 2023 GMT

Subject:
commonName = collab.its.virginia.edu
organizationalUnitName = Information Technology and Communication
organizationName = University of Virginia
stateOrProvinceName = Virginia
countryName = US

..... 17

example web certificate (1)
Certificate:

Data:
....

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:f4:e4:d4:6c:
94:be:91:a8:6a:21:43:b2:d5:9a:48:b0:64:d9:f7:
f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:f6:46:4b:42:

....
X509v3 extensions:

....
X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication
....

X509v3 Subject Alternative Name:
DNS:collab.its.virginia.edu
DNS:collab-prod.its.virginia.edu
DNS:collab.itc.virginia.edu

Signature Algorithm: sha256WithRSAEncryption
39:70:70:77:2d:4d:0d:0a:6d:d5:d1:f5:0e:4c:e3:56:4e:31:

.... 18

certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority

so their public key, comes with my OS/browser?
not exactly…

they have their own certificate signed by “USERTrust RSA
Certification Authority”
and their public key comes with your OS/browser?

(but both CAs now operated by UK-based Sectigo)
19

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…

some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

20

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

20

how many trust anchors?
Mozilla Firefox (as of 27 Feb 2023)

155 trust anchors
operated by 55 distinct entities

Microsoft Windows (as of 27 Feb 2023)
237 trust anchors
operated by 86 distinct entities

21

public-key infrastructure
ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure”

several of these:
for verifying identity of websites
for verifying origin of domain name records (kind-of)
for verifying origin of applications in some OSes/app stores/etc.
for encrypted email in some organizations
…

22

exercise
exercise: how should website certificates verify identity?

23

how do certificate authorities verify
for web sites, set by CA/Browser Forum

organization of:
everyone who ships code with list of valid certificate authorities

Apple, Google, Microsoft, Mozilla, Opera, Cisco, Qihoo 360, Brave, …
certificate authorities

decide on rules (“baseline requirements”) for what CAs do

24

BR domain name identity validation
options involve CA choosing random value and:

sending it to domain contact (with domain registrar) and receive
response with it, or

observing it placed in DNS or website or sent from server in other
specific way

exercise: problems this doesn’t deal with?

25

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

26

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

26

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

26

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

26

other cryptographic tools

27

motivation: summary for signature
mentioned that asymmetric encryption has size limit

same problem for digital signatures

solution: sign “summary” of message

how to get summary?

hash function, but…

28

cryptographic hash
hash(M) = X

given X:
hard to find message other than by guessing

given X, M:
hard to find second message so that hash(second message) = H

29

cryptographic hash uses
find shorter ‘summary’ to substitute for data

what hashtables use them for, but…
we care that adversaries can’t cause collisions!

deal with message limits in signatures/etc.

password hashing — but be careful! [next slide]

constructing message authentication codes
hash message + secret info (+ some other details)

30

cryptographic hash uses
find shorter ‘summary’ to substitute for data

what hashtables use them for, but…
we care that adversaries can’t cause collisions!

deal with message limits in signatures/etc.

password hashing — but be careful! [next slide]

constructing message authentication codes
hash message + secret info (+ some other details)

30

password hashing
cryptographic hash functions are good at requiring guesses to
‘reverse’

problem: guessing passwords is very fast

solution: slow/resource-intensive cryptographic hash functions
Argon2i
scrypt
PBKDF2

31

just asymmetric?
given public-key encryption + digital signatures…

why bother with the symmetric stuff?

symmetric stuff much faster

symmetric stuff much better at supporting larger messages

32

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

33

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

33

Diffie-Hellman key agreement (2)
A and B want to agree on shared secret

A chooses random value Y

A sends public value derived from Y (“key share”)

B chooses random value Z

B sends public value derived from Z (“key share”)

A combines Y with public value from B to get number
B combines Z with public value from A to get number

and b/c of math chosen, both get same number
34

Diffie-Hellman key agreement (1)
math requirement:

some f , so f(f(X, Y), Z) = f(f(X, Z), Y)
(that’s hard to invert, etc.)

choose X in advance and:
A randomly chooses Y B randomly chooses Z
A sends f(X, Y) to B B sends f(X, Z) to A
A computes f(f(X, Z), Y) B computes f(f(X, Y), Z)

35

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y

PE(public key, message) =
generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

36

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

36

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, … 36

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

37

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

37

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

37

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

37

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

37

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

37

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

37

TLS: after handshake
use key shares results to get several keys

take hash(something + shared secret) to derive each key

separate keys for each direction (server → client and vice-versa)

often separate keys for encryption and MAC

later messages use encryption + MAC + nonces

38

things modern TLS usually does
(not all these properties provided by all TLS versions and modes)

confidentiality/authenticity
server = one ID’d by certificate
client = same throughout whole connection

forward secrecy
can’t decrypt old conversations (data for KeyShares is temporary)

fast
most communication done with more efficient symmetric ciphers
1 set of messages back and forth to setup connection

39

denial of service (1)
so far: worried about network attacker disrupting
confidentiality/authenticity

what if we’re just worried about just breaking things

well, if they control network, nothing we can do…

but often worried about less

40

denial of service (2)
if you just want to inconvenience…

attacker just sends lots of stuff to my server

my server becomes overloaded?

my network becomes overloaded?

but: doesn’t this require a lot of work for attacker?

exercise: why is this often not a big obstacle

41

denial of service: asymmetry
work for attacker > work for defender

how much computation per message?
complex search query?
something that needs tons of memory?
something that needs to read tons from disk?

how much sent back per message?

resources for attacker > resources of defender

how many machines can attacker use?

42

denial of service: reflection/amplification
instead of sending messages directly…attacker can send messages
“from” you to third-party

third-party sends back replies that overwhelm network

example: short DNS query with lots of things in response

“amplification” =
third-party inadvertantly turns small attack into big one

43

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

44

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

45

network security summary (1)
communicating securely with math

secret value (shared key, public key) that attacker can’t have
symmetric: shared keys used for ed/encryption + auth/verify; fast
asymmetric: public key used by any for encrypt + verify; slower
asymmetric: private key used by holder for decrypt + sign; slower

protocol attacks — repurposing encrypt/signed/etc. messages

certificates — verifiable forwarded public keys

key agreement — for generated shared-secret “in public”
publish key shares from private data
combine private data with key share for shared secret

46

network security summary (2)
TLS: combine all cryptography stuff to make “secure channel”

denial-of-service — attacker just disrupts/overloads (not subtle)

firewalls

47

backup slides

48

	certificate authorities
	how certificates verified

	other cryptogrpahic tools
	cryptographic hashes
	password hashing
	key agreement
	aside: key agreement to public key encrypt

	putting it together: TLS
	handshake
	after handshake
	TLS handshake properties

	misc. security issues
	denial of service
	amplification example

	firewalls
	security summary

	backup slides

