
1

so far
building processes

virtual memory + virtual CPU (thread) + files (virtual storage)

connecting machines (networking, security)

caching — speedy memories

interfaces for controlling processes

revisiting threads
multi-threaded processes
passing values to/waiting for threads

2

last time
reordering of loads/stores by compilers, processors

locks
way to take turns
don’t actually restrict access to resourcej

barriers
wait for every other thread

deadlock problem

3

anonymous feedback
locks not covered in F2022 DSA1 due to end-of-semester stuff

think we went into full detail last time

captions on recordings not there
some not-so-automatically imported automated (low-quality) captions
was missing some I tried to import due to filename problem, probably
fixes

complimentary feedback
I really appreciate all of your patience in answering questions that students have, guidance on homework
questions (that may seem easy to understand for you but may be a bit more challenging for students), and
your responsiveness on piazza. I’m thankful for how you are willing to sit down with students in office hours
to walk them through problems they are encountering step by step in an encouraging manner. It really
makes me feel like I have all the support I need to be successful in this class, and it’s something that not a
lot of other teachers can offer, so I just wanted to express my gratitude amidst all the other negative
complaints.

4

Quiz: pthread_join mistakes
pthread_join(pthread_t, void**)

I wrote code as if it was pthread_join(pthread_t,
void**)

meant that:
needed to accept “most likely crash” as valid answer for Q2
in Q3 pthread_joins would not actually wait for threads to finish,
so option F was correct!

wasn’t my intention to test this kind of API detail
since it’s something you’d notice by reading compiler warnings/errors

(should have spent some quiz proofreading time compiling code…)
5

quiz Q1
void foo() {

int array[4] = {0, 0, 0, 0}; /* <--- on stack of foo() */
...
int *q = &array[i]; /* <--- q points to stack of foo() */
/* same as: int *q; q = &array[i]; */
pthread_create(...., (void *) q); /* passing 'q' to thread */
...

}

void *thread_func(void *arg) {
int *p;
p = (int*) arg; /* <-- p = q, so p points to stack of foo() */
p = 1; / <--- modifies what p points to */
...

}

6

quiz Q4b
“assume that all code follows the convention that dynamic_array
structs are only read or modified while holding the lock in the
struct”

pthread_mutex_unlock(&to_add−>lock);
... /* <-- to_dad->data, to_add->size could change here */
pthread_mutex_lock(&to_add−>lock);
/* but not while executing the below: */
memcpy(dest−>new_data + dest−>size, to_add−>data, to_add−>size * sizeof(int));
dest−>size += to_add−>size;

will either copy from new allocation or from original allocation
before new allocation is made
should’ve written ‘out-of-date allocation’ instead of ‘old allocation’
in quiz option (or made it clearer that it needed to be a problem)

7

quiz Q4c
append_to_array(dest, A) + append_to_array(dest, B)

lock for dest is held during whole function

so the two calls take turns

8

the one-way bridge

9

the one-way bridge

9

the one-way bridge

9

the one-way bridge

9

moving two files
struct Dir {
mutex_t lock; HashMap entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
mutex_lock(&from_dir−>lock);
mutex_lock(&to_dir−>lock);

Map_put(to_dir−>entries, filename,
Map_get(from_dir−>entries, filename));

Map_erase(from_dir−>entries, filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

10

moving two files: lucky timeline (1)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

lock(&B->lock);
lock(&A->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

11

moving two files: lucky timeline (2)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);

lock(&B->lock…
(do move) (waiting for B lock)
unlock(&B->lock);

lock(&B->lock);
lock(&A->lock…

unlock(&A->lock);
lock(&A->lock);
(do move)
unlock(&A->lock);
unlock(&B->lock);

12

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

13

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

13

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

13

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

13

moving two files: dependencies
directory B

directory A

thread 1 thread 2

waiting for lock

waiting for lock

lock held by

lock held by

14

moving three files: dependencies
directory B

directory Cdirectory A

thread 1 thread 2

thread 3

waiting for lock

waiting for lock

waiting for lock

lock held by

lock held by

lock held by

15

moving three files: unlucky timeline
Thread 1 Thread 2 Thread 3

MoveFile(A, B, "foo") MoveFile(B, C, "bar") MoveFile(C, A, "quux")

lock(&A->lock);

lock(&B->lock);

lock(&C->lock);

lock(&B->lock… stalled

lock(&C->lock… stalled

lock(&A->lock… stalled

16

deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

17

deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled

18

free space: dependency graph
memory in
2 (1MB) units

thread 1 thread 2

allocated

waiting for

19

deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

20

dining philosophers

five philosophers either think or eat
to eat:
grab chopstick on left, then
grba chopstick on right, then
then eat, then
return chopsticks

everyone eats at the same time?
grab left chopstick, then…
everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

21

dining philosophers

five philosophers either think or eat
to eat:
grab chopstick on left, then
grba chopstick on right, then
then eat, then
return chopsticks

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

21

dining philosophers

five philosophers either think or eat
to eat:
grab chopstick on left, then
grba chopstick on right, then
then eat, then
return chopsticks

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

21

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks
22

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks
22

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

23

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

23

deadlock requirements
mutual exclusion

one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can’t ‘steal’

circular wait
there exists a set {T1, . . . , Tn} of waiting threads such that

T1 is waiting for a resource held by T2
T2 is waiting for a resource held by T3
…
Tn is waiting for a resource held by T1

24

how is deadlock possible?
Given list: A, B, C, D, E
RemoveNode(LinkedListNode *node) {

pthread_mutex_lock(&node−>lock);
pthread_mutex_lock(&node−>prev−>lock);
pthread_mutex_lock(&node−>next−>lock);
node−>next−>prev = node−>prev; node−>prev−>next = node−>next;
pthread_mutex_unlock(&node−>next−>lock); pthread_mutex_unlock(&node−>prev−>lock);
pthread_mutex_unlock(&node−>lock);

}

Which of these (all run in parallel) can deadlock?
A. RemoveNode(B) and RemoveNode(C)
B. RemoveNode(B) and RemoveNode(D)
C. RemoveNode(B) and RemoveNode(C) and RemoveNode(D)
D. A and C E. B and C
F. all of the above G. none of the above 25

how is deadlock — solution
Remove B Remove C
lock B lock C
lock A (prev) wait to lock B (prev)
wait to lock C (next)

With B and D — only overlap in in node C — no circular wait possible

27

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

29

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

30

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

31

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
…

requires some way to undo partial changes to avoid errors
common approach for databases
…

32

stealing locks???
how do we make stealing locks possible

unclean: just kill the thread
problem: inconsistent state?

clean: have code to undo partial oepration
some databases do this

won’t go into detail in this class

33

revokable locks?
try {

AcquireLock();
use shared data

} catch (LockRevokedException le) {
undo operation hopefully?

} finally {
ReleaseLock();

}

34

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

35

abort and retry limits?
abort-and-retry

pthread’s mutexes:
pthread_mutex_trylock
pthread_mutex_timedlock

how many times will you retry?

36

moving two files: abort-and-retry
struct Dir { mutex_t lock; HashMap entries; };
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
while (true) {
mutex_lock(&from_dir−>lock);
if (mutex_trylock(&to_dir−>lock) == LOCKED) break;
mutex_unlock(&from_dir−>lock);

}

Map_put(to_dir−>entries, filename, Map_get(from_dir−>entries, filename));
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo"); Thread 2: MoveFile(B,
A, "bar")

37

moving two files: lots of bad luck?
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
38

livelock
livelock: keep aborting and retrying without end

like deadlock — no one’s making progress
potentially forever

unlike deadlock — threads are not waiting

39

preventing livelock
make schedule random — e.g. random waiting after abort

make threads run one-at-a-time if lots of aborting

other ideas?

40

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
…

requires some way to undo partial changes to avoid errors
common approach for databases
…

41

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

42

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {

if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

43

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {

if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

43

acquiring locks in consistent order (2)
often by convention, e.g. Linux kernel comments:
/*
* ...
* Lock order:
* contex.ldt_usr_sem
* mmap_sem
* context.lock
*/

/*
* ...
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
* ...
*/

44

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…

45

deadlock detection
why? debugging or fix deadlock by aborting operations

idea: search for cyclic dependencies

46

detecting deadlocks on locks
let’s say I want to detect deadlocks that only involve mutexes

goal: help programmers debug deadlocks

…by modifying my threading library:
struct Thread {

... /* stuff for implementing thread */
/* what extra fields go here? */

};

struct Mutex {
... /* stuff for implementing mutex */
/* what extra fields go here? */

}; 47

deadlock detection
why? debugging or fix deadlock by aborting operations

idea: search for cyclic dependencies

need:
list of all contended resources
what thread is waiting for what?
what thread ‘owns’ what?

48

aside: divisible resources
deadlock is possible with divislbe resources like memory,…
example: suppose 6MB of RAM for threads total:

thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?
not a deadlock — thread 3 can still finish

and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

49

aside: divisible resources
deadlock is possible with divislbe resources like memory,…
example: suppose 6MB of RAM for threads total:

thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?
not a deadlock — thread 3 can still finish

and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

49

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

50

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

50

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

50

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

50

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

50

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

50

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

50

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock

deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

51

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock
deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

51

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

52

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

52

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

52

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

52

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

52

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

52

deadlock detection with divisible resources
for each resource: track which threads have those resources

for each thread: resources they are waiting for

repeatedly:
find a thread where all the resources it needs are available
remove that thread and mark the resources it has as free — it can
complete now!

either: all threads eliminated or found deadlock

53

aside: deadlock detection in reality
requires:

instrumenting contended resources
“undo” to get out of deadlock

common example: for locks in a database
database typically has customized locking code
“undo” exists as side-effect of code for handling power/disk failures

related idea: avoid deadlock with detection on “what if” scenario
see Banker’s algorithm

54

example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

55

example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

55

example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

55

monitors/condition variables
locks for mutual exclusion

condition variables for waiting for event
operations: wait (for event); signal/broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables + shared data
Java: every object is a monitor (has instance variables, built-in lock,
cond. var)
pthreads: build your own: provides you locks + condition variables

56

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

57

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

57

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

57

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

57

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

58

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

58

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

58

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

58

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

58

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

59

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

59

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

59

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {

pthread_cond_wait(&finished_cv, &lock);
}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

59

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

59

WaitForFinish timeline 1
WaitForFinish thread Finish thread
mutex_lock(&lock)
(thread has lock)

mutex_lock(&lock)
(start waiting for lock)

while (!finished) ...
cond_wait(&finished_cv, &lock);
(start waiting for cv) (done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)
(done waiting for lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

60

WaitForFinish timeline 2
WaitForFinish thread Finish thread

mutex_lock(&lock)
finished = true
cond_broadcast(&finished_cv)
mutex_unlock(&lock)

mutex_lock(&lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

61

why the loop
while (!finished) {

pthread_cond_wait(&finished_cv, &lock);
}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

62

why the loop
while (!finished) {

pthread_cond_wait(&finished_cv, &lock);
}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

62

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

63

Hoare versus Mesa monitors
Hoare-style monitors

signal ‘hands off’ lock to awoken thread

Mesa-style monitors
any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library I know of does Mesa-style

64

backup slides

65

66

backup slides

67

pipe() deadlock
BROKEN example:
int child_to_parent_pipe[2], parent_to_child_pipe[2];
pipe(child_to_parent_pipe); pipe(parent_to_child_pipe);
if (fork() == 0) {

/* child */
write(child_to_parent_pipe[1], buffer, HUGE_SIZE);
read(parent_to_child_pipe[0], buffer, HUGE_SIZE);
exit(0);

} else {
/* parent */
write(parent_to_child_pipe[1], buffer, HUGE_SIZE);
read(child_to_parent_pipe[0], buffer, HUGE_SIZE);

}

This will hang forever (if HUGE_SIZE is big enough).
68

deadlock waiting
child writing to pipe waiting for free buffer space

…which will not be available until parent reads

parent writing to pipe waiting for free buffer space

…which will not be available until child reads

69

circular dependency
parent to child

pipe buffer

child to parent
pipe buffer

parent
process

child
process

waiting for space
to write

waiting for space
to write

needs to be
read by process
to free space

needs to be
read by process
to free space

70

allocating all at once?
for resources like disk space, memory

figure out maximum allocation when starting thread
“only” need conservative estimate

only start thread if those resources are available

okay solution for embedded systems?

71

deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

72

deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled

73

free space: dependency graph
memory in
2 (1MB) units

thread 1 thread 2

allocated

waiting for

74

deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

75

AllocateOrFail
Thread 1 Thread 2

AllocateOrFail(1 MB)
AllocateOrFail(1 MB)

AllocateOrFail(1 MB) fails!
AllocateOrFail(1 MB) fails!

Free(1 MB) (cleanup after failure)
Free(1 MB) (cleanup after failure)

okay, now what?
give up?
both try again? — maybe this will keep happening? (called livelock)
try one-at-a-time? — gaurenteed to work, but tricky to implement

76

AllocateOrSteal
Thread 1 Thread 2

AllocateOrSteal(1 MB)
AllocateOrSteal(1 MB)

AllocateOrSteal(1 MB) Thread killed to free 1MB
(do work)

problem: can one actually implement this?

problem: can one kill thread and keep system in consistent state?

77

fail/steal with locks
pthreads provides pthread_mutex_trylock — “lock or fail”

some databases implement revocable locks
do equivalent of throwing exception in thread to ‘steal’ lock
need to carefully arrange for operation to be cleaned up

78

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — ordering

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

mark some chopsticks places
rule: grab from marked place first
only grab other chopstick after that

avoids circular dependency,
means everyone else
eventually gets a turn

79

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eatand person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eatand person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

dining philosophers — aborting

dining philosopher
what if someone’s impatient
just gives up instead of waiting

now everyone else can eat

and person who gave up
might succeed later

80

using deadlock detection for prevention
suppose you know the maximum resources a process could request

make decision when starting process (“admission control”)

ask “what if every process was waiting for maximum resources”
including the one we’re starting

would it cause deadlock? then don’t let it start

called Banker’s algorithm

81

using deadlock detection for prevention
suppose you know the maximum resources a process could request

make decision when starting process (“admission control”)

ask “what if every process was waiting for maximum resources”
including the one we’re starting

would it cause deadlock? then don’t let it start

called Banker’s algorithm

81

82

backup slides

83

recall: pthread mutex
#include <pthread.h>

pthread_mutex_t some_lock;
pthread_mutex_init(&some_lock, NULL);
// or: pthread_mutex_t some_lock = PTHREAD_MUTEX_INITIALIZER;
...
pthread_mutex_lock(&some_lock);
...
pthread_mutex_unlock(&some_lock);
pthread_mutex_destroy(&some_lock);

84

life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

85

life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

85

→

→

swap
→

←

86

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

87

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

87

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

87

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

87

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

87

exercise: spin wait
consider implementing ‘waiting’ functionality of pthread_join

thread calls ThreadFinish() when done
complete code below:
finished: .quad 0
ThreadFinish:

ret

ThreadWaitForFinish:

lock xchg %eax, finished
cmp $0, %eax
____ ThreadWaitForFinish
ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

88

exercise: spin wait
finished: .quad 0
ThreadFinish:

__________A______________
ret

ThreadWaitForFinish: /* or without using a writing instruction: */
_________B______________ mov %eax, finished
lock xchg %eax, finished mfence
cmp $0, %eax cmp $0, %eax
__C_ ThreadWaitForFinish je ThreadWaitForFinish
ret ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

90

spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

91

spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

92

mutexes: intelligent waiting
want: locks that wait better

example: POSIX mutexes

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

93

mutexes: intelligent waiting
want: locks that wait better

example: POSIX mutexes

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

93

better lock implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

94

better lock implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

94

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

95

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

95

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

95

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

95

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 95

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 95

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 95

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 95

mutex and scheduler subtly
core 0 (thread A) core 1 (thread B)
start LockMutex
acquire spinlock
discover lock taken
enqueue thread A
thread A set not runnable
release spinlock start UnlockMutex

thread A set runnable
finish UnlockMutex
run scheduler
scheduler switches to A
…with old verison of registers

thread A runs scheduler …
…finally saving registers …

Linux soln.: track ‘thread running’ separately from ‘thread
runnable’
xv6 soln.: hold scheduler lock until thread A saves registers

96

mutex and scheduler subtly
core 0 (thread A) core 1 (thread B)
start LockMutex
acquire spinlock
discover lock taken
enqueue thread A
thread A set not runnable
release spinlock start UnlockMutex

thread A set runnable
finish UnlockMutex
run scheduler
scheduler switches to A
…with old verison of registers

thread A runs scheduler …
…finally saving registers …

Linux soln.: track ‘thread running’ separately from ‘thread
runnable’
xv6 soln.: hold scheduler lock until thread A saves registers

96

mutex efficiency
‘normal’ mutex uncontended case:

lock: acquire + release spinlock, see lock is free
unlock: acquire + release spinlock, see queue is empty

not much slower than spinlock

97

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

98

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

98

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

99

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

99

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

99

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

100

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

100

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

100

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

100

C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

101

C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

101

C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

101

C++ standard rules for containers
multiple threads can read anything at the same time

can only read element if no other thread is modifying it

can safely add/remove elements if no other threads are accessing
container

(sometimes can safely add/remove in extra cases)

exception: vectors of bools — can’t safely read and write at same
time

might be implemented by putting multiple bools in one int

102

GCC: preventing reordering example (1)
void Alice() {

int one = 1;
__atomic_store(¬e_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(¬e_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

103

GCC: preventing reordering example (2)
void Alice() {

note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice <- 1

.L3:
mfence // make sure store is visible to other cores before loading

// on x86: not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
...

104

exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

105

solution
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

106

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

107

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{

pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

107

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

107

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

107

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

108

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

108

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

108

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

108

fetch-and-add with CAS (1)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true;

} else {
return false;

}
}

long my_fetch_and_add(long *pointer, long amount) { ... }

implementation sketch:
fetch value from pointer old
compute in temporary value result of addition new
try to change value at pointer from old to new
[compare-and-swap]
if not successful, repeat 109

fetch-and-add with CAS (2)
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
} while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

110

exercise: append to singly-linked list
ListNode is a singly-linked list

assume: threads only append to list (no deletions, reordering)

use compare-and-swap(pointer, old, new):
atomically change *pointer from old to new
return true if successful
return false (and change nothing) if *pointer is not old

void append_to_list(ListNode *head, ListNode *new_last_node) {
...

}

111

append to singly-linked list
/* assumption: other threads may be appending to list,
* but nodes are not being removed, reordered, etc.
*/

void append_to_list(ListNode *head, ListNode *new_last_node) {
memory_ordering_fence();
ListNode *current_last_node;
do {
current_last_node = head;
while (current_last_node−>next) {

current_last_node = current_last_node−>next;
}

} while (
!compare−and−swap(¤t_last_node−>next,

NULL, new_last_node)
);

}

113

some common atomic operations (1)
// x86: emulate with exchange
test_and_set(address) {

old_value = memory[address];
memory[address] = 1;
return old_value != 0; // e.g. set ZF flag

}

// x86: xchg REGISTER, (ADDRESS)
exchange(register, address) {

temp = memory[address];
memory[address] = register;
register = temp;

}

114

some common atomic operations (2)
// x86: mov OLD_VALUE, %eax; lock cmpxchg NEW_VALUE, (ADDRESS)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

// x86: lock xaddl REGISTER, (ADDRESS)
fetch−and−add(address, register) {

old_value = memory[address];
memory[address] += register;
register = old_value;

}

115

common atomic operation pattern
try to do operation, …

detect if it failed

if so, repeat

atomic operation does “try and see if it failed” part

116

cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block

117

MSI state summary
Modified value may be different than memory and I am the

only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need to ask for it

118

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus

example: write while Shared
must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

119

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

119

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy 119

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

120

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100101 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

120

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 101102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

120

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

120

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

120

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100102 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

120

MSI: update memory
to write value (enter modified state), need to invalidate others

can avoid sending actual value (shorter message/faster)

“I am writing address X” versus “I am writing Y to address X”

121

MSI: on cache replacement/writeback
still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)

122

cache coherency exercise
modified/shared/invalid; all initially invalid; 32B blocks, 8B
read/writes

CPU 1: read 0x1000
CPU 2: read 0x1000
CPU 1: write 0x1000
CPU 1: read 0x2000
CPU 2: read 0x1000
CPU 2: write 0x2008
CPU 3: read 0x1008

Q1: final state of 0x1000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

Q2: final state of 0x2000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

123

cache coherency exercise solution
0x1000-0x101f 0x2000-0x201f

action CPU 1 CPU 2 CPU 3 CPU 1 CPU 2 CPU 3
I I I I I I

CPU 1: read 0x1000 S I I I I I
CPU 2: read 0x1000 S S I I I I
CPU 1: write 0x1000 M I I I I I
CPU 1: read 0x2000 M I I S I I
CPU 2: read 0x1000 S S I S I I
CPU 2: write 0x2008 S S I I M I
CPU 3: read 0x1008 S S S I M I

125

why load/store reordering?
fast processor designs can execute instructions out of order

goal: do something instead of waiting for slow memory accesses,
etc.

more on this later in the semester

126

C++: preventing reordering
to help implementing things like pthread_mutex_lock

C++ 2011 standard: atomic header, std::atomic class

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing

127

C++: preventing reordering example
#include <atomic>
void Alice() {

note_from_alice = 1;
do {

std::atomic_thread_fence(std::memory_order_seq_cst);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice <- 1

.L2:
mfence // make sure store visible on/from other cores
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L2
cmpl $0, no_milk
...

128

C++ atomics: no reordering
std::atomic<int> note_from_alice, note_from_bob;
void Alice() {

note_from_alice.store(1);
do {
} while (note_from_bob.load());
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

129

GCC: built-in atomic functions
used to implement std::atomic, etc.

predate std::atomic

builtin functions starting with __sync and __atomic

these are what xv6 uses

130

aside: some x86 reordering rules
each core sees its own loads/stores in order

(if a core stores something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores too early)

causality :
if a core reads X=a and (after reading X=a) writes Y=b,
then a core that reads Y=b cannot later read X=older value than a

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 131

how do you do anything with this?
difficult to reason about what modern CPU’s reordering rules do

typically: don’t depend on details, instead:

special instructions with stronger (and simpler) ordering rules
often same instructions that help with implementing locks in other ways

special instructions that restrict ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence

132

spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

133

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

134

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

134

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

134

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

134

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

134

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

134

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

134

ping-ponging
test-and-set problem: cache block “ping-pongs” between caches

each waiting processor reserves block to modify
could maybe wait until it determines modification needed — but not
typical implementation

each transfer of block sends messages on bus

…so bus can’t be used for real work
like what the processor with the lock is doing

135

test-and-test-and-set (pseudo-C)
acquire(int *the_lock) {

do {
while (ATOMIC−READ(the_lock) == 0) { /* try again */ }

} while (ATOMIC−TEST−AND−SET(the_lock) == ALREADY_SET);
}

136

test-and-test-and-set (assembly)
acquire:

cmp $0, the_lock // test the lock non-atomically
// unlike lock xchg --- keeps lock in Shared state!

jne acquire // try again (still locked)
// lock possibly free
// but another processor might lock
// before we get a chance to
// ... so try wtih atomic swap:
movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 (someone else got it first):
jne acquire // try again
ret

137

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

138

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

138

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

138

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

138

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

138

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

138

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

138

couldn’t the read-modify-write instruction…
notice that the value of the lock isn’t changing…

and keep it in the shared state

maybe — but extra step in “common” case
(swapping different values)

139

more room for improvement?
can still have a lot of attempts to modify locks after unlocked

there other spinlock designs that avoid this
ticket locks
MCS locks
…

140

MSI extensions
real cache coherency protocols sometimes more complex:

separate tracking modifications from whether other caches have
copy

send values directly between caches (maybe skip write to memory)

send messages only to cores which might care (no shared bus)

141

too much milk
roommates Alice and Bob want to keep fridge stocked with milk:
time Alice Bob
3:00 look in fridge. no milk
3:05 leave for store
3:10 arrive at store look in fridge. no milk
3:15 buy milk leave for store
3:20 return home, put milk in fridge arrive at store
3:25 buy milk
3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?

142

too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying, remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?

143

too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying, remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?
143

too much milk “solution” 1 (timeline)
if (no milk) {

if (no note) {

Alice Bob

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

leave note;
buy milk;
remove note;

}
} 144

too much milk “solution” 2 (algorithm)
intuition: leave note when buying or checking if need to buy
leave note;
if (no milk) {

if (no note) {
buy milk;

}
}
remove note;

145

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

146

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note

…will never buy milk (twice or once)

146

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

146

“solution” 3: algorithm
intuition: label notes so Alice knows which is hers (and vice-versa)

computer equivalent: separate noteFromAlice and noteFromBob
variables

leave note from Alice;
if (no milk) {

if (no note from Bob) {
buy milk

}
}
remove note from Alice;

Alice
leave note from Bob;
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob;

Bob

147

too much milk: “solution” 3 (timeline)
leave note from Alice
if (no milk) {

Alice Bob

leave note from Bob
if (no note from Bob) {

buy milk
}

}
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob

remove note from Alice 148

too much milk: is it possible
is there a solutions with writing/reading notes?

≈ loading/storing from shared memory

yes, but it’s not very elegant

149

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

150

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

150

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

150

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

150

Peterson’s algorithm
general version of solution

see, e.g., Wikipedia

we’ll use special hardware support instead

151

mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

152

mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

152

modifying cache blocks in parallel
cache coherency works on cache blocks

but typical memory access — less than cache block
e.g. one 4-byte array element in 64-byte cache block

what if two processors modify different parts same cache block?
4-byte writes to 64-byte cache block

cache coherency — write instructions happen one at a time:
processor ‘locks’ 64-byte cache block, fetching latest version
processor updates 4 bytes of 64-byte cache block
later, processor might give up cache block

153

modifying things in parallel (code)
void *sum_up(void *raw_dest) {

int *dest = (int *) raw_dest;
for (int i = 0; i < 64 * 1024 * 1024; ++i) {

*dest += data[i];
}

}

__attribute__((aligned(4096)))
int array[1024]; /* aligned = address is mult. of 4096 */

void sum_twice(int distance) {
pthread_t threads[2];
pthread_create(&threads[0], NULL, sum_up, &array[0]);
pthread_create(&threads[1], NULL, sum_up, &array[distance]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

}
154

performance v. array element gap
(assuming sum_up compiled to not omit memory accesses)

10 20 30 40 50 60 70
distance between array elements (bytes)

0

100000000

200000000

300000000

400000000

500000000

tim
e

(c
yc

le
s)

155

false sharing
synchronizing to access two independent things

two parts of same cache block

solution: separate them

156

exercise (1)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

results[0] = 0;
for (int i = 0; i < 512; ++i)

results[0] += values[i];
return NULL;

}
void *sum_back(void *ignored_argument) {

results[1] = 0;
for (int i = 512; i < 1024; ++i)

results[1] += values[i];
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

Where is false sharing likely to occur? How to fix?

157

exercise (2)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

my_info->result += my_info->values[i];
}
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

Where is false sharing likely to occur?
158

connecting CPUs and memory
multiple processors, common memory

how do processors communicate with memory?

159

shared bus

CPU1 CPU2 CPU3 CPU4 MEM1 MEM2

one possible design
we’ll revisit later when we talk about I/O

tagged messages — everyone gets everything, filters

contention if multiple communicators
some hardware enforces only one at a time

160

shared buses and scaling
shared buses perform poorly with “too many” CPUs

so, there are other designs

we’ll gloss over these for now

161

shared buses and caches
remember caches?

memory is pretty slow

each CPU wants to keep local copies of memory

what happens when multiple CPUs cache same memory?

162

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

163

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100101
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

163

	deadlock examples
	a one-way bridge
	with locks
	with memory
	dining philosophers

	deadlock definition
	short intuition
	conditions for deadlock

	exercise
	deadlock prevention
	techniques overview
	example: no waiting
	revokable locks

	example: livelock
	example: consistent order
	deadlock detection
	problem with divisible resources?
	real detection?

	producer/consumer problem
	monitors
	introduction
	example: WaitForFinished
	unbounded queue with monitors
	Hoare scheduling note

	backup slides
	backup slides
	with pipes
	pre-requesting maximum resources
	aborting locks
	dining philosophers solutions
	detection to prevention

	backup sides
	recall: POSIX mutexes
	even/odd idea for life hw
	x86-64 spinlock
	exercise: spin-wait
	spinlock problems
	locks that sleep
	pseudocode
	need for scheduler integration
	analysis: uncontended case

	disabling interrupts for locks
	aside: standard container rules
	GCC atomic/sync stuff
	exercise: atomic add
	xv6's spinlock debugging
	CAS for fetch-and-add
	exercise: CAS for appending to list
	more atomic operations
	cache coherency detail
	adding more state: MSI
	exercise

	processor load/store reordering
	C++atomic/sync stuff
	x86-64 reordering rules
	test-and-test-and-set
	beyond MSI

	too much milk: locks from load/store?
	setup: buying milk
	wrong solution 1: missed notes
	wrong solution 2: read own note
	wrong solution 3: too little milk
	correct solution: Peterson's algorithm
	mfence
	false sharing
	exercise

	cache coherency
	preview: processor buses
	problem setup / snooping
	the cache coherency problem

