

last time (1)

single-cycle CPU review
one possible CPU design that runs one instruction per cycle
PC changes at beginning of cycle, cascades for other components to
operation

pipelining idea
laundry analogy
opportunity: in single-cycle design, most components mostly idle
assembly-line: step 1 of instr 1 then {step 2 of instr 1 + step 1 of instr
2}
then {step 3 of instr 1 + step 2 of instr 2 + step 1 of instr 3} then ..
adding registers to store values for each stage

last time (2)

pipelining limits
cycle time determined by slowest stage
time taken by new registers
uneven split of stages
doubling pipeline stages != half cycle time

data hazards
solving by changing ISA?
solving by stalling (insert nops)

anonymous feedback

“Why are we using kytos for the autograders when we can use gradescope? Having to wait over an hour
for an "autograder” is unacceptable. | have never had gradescope take more than 2 minutes with any
autograded submission and I've never had kytos take less than 5 minutes, often it taking an hour/running
overnight. | understand there are conveniences with kytos (the cumulative performance), but if we are
truly doing assignments that are autograded and provide instant feedback, we shouldn’t need to spend
several hours waiting. I'll propose some potential solutions that could remedy the problem: 1. If people
are missing just 1-2 tests on the autograder, just bump their score up to 100 so they don't clog up
the queue, 2. Extend the assignment for each person individually based on how long they've waited for
their submission to be graded (maybe up to a certain number of submissions), 3. Use Gradescope!”

life ‘test your code’ section which was pretty complete

given basically this assignment with no autograder feedback before
from talking to other faculty, gradescope is not always as fast as you think
(though, yes, when the queue is empty, it starts things sooner...)
probably would have been better if autograder gave up on submissions that
timeout a lot faster (which would've also been a problem under gradescope)

some notes on the lab (1)

map/reduce division

| expected one loop

map strategy determines which items you do log(...) operation for
reduce strategy determines how you do += to answer

okay to two loops, but much harder to make efficient

some notes on the lab (2)

why was atomic update reduce strategy slow?
processors need to take turns having accumulator (answer)
lots of synchronization time + mostly one thread works at a time

why was task queue strategy slow?
processors need to take turns grabbing index to use next

lots of synchronization time

what about few-to-many reduction with array?

results[thread_id] +=
problem: multiple thread values are in same cache block

cores need to take turns having the block in their cache to write
workaround: make results array be more spread out
called “false sharing”

upcoming lab/HW logistics

addq processor: data hazard

// initially %r8 = 800,
// %r9 = 900, etc.
addq %r8, %r9
addq %r9, %r8
addq
addq
fetch | fetch/decode decode/execute execute/memory [memory/writeback|
cycle |PC rA |rB R[rB |R[rB] |rB sum |rB sum |rB
0 0x0
1 0x2 8 9
2 9 8 800 900 9
3 900 800 8 1700 9
4 1700 8 1700 9
5 1700 8

addq processor: data hazard

// initially %r8 = 800,
// %r9 = 900, etc.
addq %r8, %r9
addq %r9, %r8
addq
addq
fetch | fetch/decode decode/execute execute/memory [memory/writeback|
cycle |PC rA |rB R[rB |R[rB] |rB sum |rB sum |rB
0 0x0
1 0x2 8 9
2 9 8 21010) 00 9
3 900 800 8 1700 9
4 1700 8 1700 9
5 should be 1700 1700 |8

data hazard
addq %r8, %r9 // (1)
addq %r9, %r8 // (2)
step# |pipeline implementation ISA specification
1 read r8, r9 for (1) read r8, r9 for (1)
2 read r9, r8 for (2) write r9 for (1)
3 write r9 for (1) read r9, r8 for (2)
4 write r8 for (2) write r8 ror (2)

pipeline reads older value...

instead of value ISA says was just written

data hazard compiler solution

addq %r8, %r9

nop

nop

addq %r9, %r8

one solution: change the ISA

all addgs take effect three instructions later
(assuming can read register value while it is being written back)

make it compiler’s job

problem: recompile everytime processor changes?

10

data hazard hardware solution

addq %r8, %r9
// hardware inserts: nop
// hardware inserts: nop
addq %r9, %r8

how about hardware add nops?
called stalling

extra logic:

sometimes don't change PC
sometimes put do-nothing values in pipeline registers

11

stalling/nop pipeline diagram (1)
cycle# 0 1 2 3 45 6 7 8

add %r8, %r9 FDE
(nop) F D
(nop) FDE

addq %r9, %r8

F D E|

12

stalling/nop pipeline diagram (1)
cycle# 0 1 2 3 45 6 7 8

add %r8, %r9 FDE

(nop) FDE

(nop) FDE

addq %r9, %rs FID]E|
assumption:

if writing register value
register file will return that value for reads

not actually way register file worked in single-cycle CPU
(e.g. can read old %r9 while writing new %r9)
12

stalling/nop pipeline diagram (2)
cycle# 0 1 2 3 45 6 7 8

add %r8, %ro F D
(nop) F
(nop)

(nop)
addq %r9, %r8

13

stalling/nop pipeline diagram (2)

add %r8, %r9
(nop)
(nop)

(nop)
addq %r9, %r8

cycle # 0 1

FID
F

2

m O m

3

4 5 6 7 8

E
D.

FID E

if we didn't modify the register file, we'd need an extra cycle

13

opportunity

// initially
//

%r8 = 800,

%r9 = 900, etc.

Ox0: addq %r8, %r9
Ox2: addq %r9, %r8

fetch | fetch/decode decode/execute execute/memory [memory/writeback|
cycle |PC rA |rB R[rB |R[rB] |rB sum |rB sum |rB
[0] 0x0
1 Ox2 8 9
2 9 8 1800 00 9 .
3 900 8O0 8 I 1700 D
4 1700 1700 9
5 should be 1700 1700 |8

14

exploiting the opportunity

:

fetch

-

1$

-+ instr |

len

read |y

- e K -

decode]
P

math

memory

register
file

write

writeback

15

exploiting the opportunity

memor
fetch decode Aeeeﬁ_ y
u >

- read - |y/™
PC Mgt math || [

ister{

MUX

opportunity 2

// initially %r8 = 800,
// %r9 = 900, etc.
Ox0: addq %r8, %r9
Ox2: nop
0x3: addq %r9, %r8

fetch | fetch/decode decode/execute execute/memory [memory/writeback|
cycle |PC rA |rB R[rB |R[rB] |rB sum |rB sum |rB
0 0x0
1 0x2 8 9
2 0x3 - - 800 900 9
3 9 8 4= T - 1700 9 i —
4 900 [gee [8 - -— [[2700 b
Z ShOUld be 1700 ke 2 1700 9

16

exploiting the opportunity

memor
fetch decode Aeeeﬁ_ y
u >

- read - |y/*
PC) math || [

ister{|’

MUX

exercise: forwarding paths

cycle# 0 1 2 3 4 5 6 7 8
addq %r8, %r9 FDEMW
subq %r8, %rl10 FDEMW
xorq %r8, %r9 FDEMW
andq %r9, %r8 FDEMW
in subg, %r8 is addq.
in xorq, %r9 is addq.
in andq, %r9 is addq.
in andq, %r9 is xordq.

A: not forwarded from
B-D: forwarded to decode from {execute,memory,writeback} stage of 18

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rill
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

m O mMN

m o mx W

mMmom=z= »
omx =

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rill
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

m o mx W

mMmom=z= »
omx =

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rill
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

m o mx W

mMmom=z= »
omx =

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rill
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

m o mx W

mMmom=z= M
omx =

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rll
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

-norn.zi-b
omx =

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rll
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

-norn.zi-b
omx =

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rill
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl@, %r9

0
F

1
D
F

-norn.zi-b

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rill
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

-norn.zi-b

=

19

some forwarding paths

cycle #
addq %r8, %r9
subq %r9, %rill
movq 4 (%rll), %rl0
movq %r9, 8(%rll)
xorq %rl0, %r9

0
F

1
D
F

-norn.zi-b

=

19

multiple forwarding paths (1)

addq ¢
addq ¢
addq ¢

6rl0,
6rll,
6rl2,

%r8
%r8
%r8

cycle #

0
F

1
D
F

2

E
D
F

4

m =< =

5

w
M

20

multiple forwarding paths (1)

addq ¢
addq ¢
addq ¢

6rl0,
6rll,
6rl2,

%r8
%r8
%r8

cycle #

0
F

1
D
F

2

E
D
F

4

m =< =

5

w
M

20

multiple forwarding paths (2)

addq ¢
addq ¢
addq ¢

6rl0,
6rll,
6rl2,

%r8
%ril2
%r8

cycle #

0
F

1
D
F

2

E
D
F

3
M
E
D

4

m =< =

5

w
M

21

multiple forwarding paths (2)

addq ¢
addq ¢
addq ¢

6rl0,
6rll,
6rl2,

%r8
%ril2
%r8

cycle #

0
F

1
D
F

2

E
D
F

3
M
E
D

4

m =< =

5

w
M

21

multiple forwarding paths (2)

addq ¢
addq ¢
addq

6rl0,
6rll,
6rl2,

%r8
%ril2
%r8

cycle #

0
F

1
D
F

2

E
D
F

3
M
E
D

4

m =< =

5

w
M

21

unsolved problem

cycle #10/1|2|3|4|5|6|7|8
movq 0 (%rax) , %rbx FIDE|M|W
subq %rbx, %rcx FIDIEYM|W

combine stalling and forwarding to resolve hazard

assumption in diagram: hazard detected in subq's decode stage
(since easier than detecting it in fetch stage)

22

unsolved problem

cycle #0123
movq 0 (%rax) , %rbx FID|E M¥W

IN
Ul
o
~
o

subq %rbx, %rcx F|| D D*E M| W

stall

combine stalling and forwarding to resolve hazard

assumption in diagram: hazard detected in subq's decode stage
(since easier than detecting it in fetch stage)

solveable problem

cycle #10/1|2|3|4|5|6|7|8
movq 0 (%rax) , %rbx FID|E wa
movq %rbx, 0 (%rcx) FID/EYM|W

23

why

can’'t we...

fetch q . execute ., Mmemory
ecode : e
u a |
1 18 [| read [] ‘, math " |
registerfl || L ——
q +Iinstr i file

clock cycle needs to be long enough
to go through data cache AND
to go through math circuits!
(which we were trying to avoid by putting them in separate stages)

why

can’'t we...

fetch execute —, ~Memory
decode -
| d H
1$ |1 ML{BEE | math._r
register|| | || =—— m
+ instr file
L T] =
e

clock cycle needs to be long enough
to go through data cache AND
to go through math circuits!
(which we were trying to avoid by putting them in separate stages)

hazards versus dependencies

dependency — X needs result of instruction Y?

has potential for being messed up by pipeline
(since part of X may run before Y finishes)

hazard — will it not work in some pipeline?

before extra work is done to “resolve” hazards
multiple kinds: so far, data hazards

25

ex.: dependencies and hazards (1)

addq %rax, %rbx
subq %rax, %rCX
movq $100, %rcx
addq %rCX, %r1o
addq %rbx, %r10

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

ex.: dependencies and hazards (1)
addq

subq

mov(q
addq
addq %r10

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

26

ex.: dependencies and hazards (1)
addq

subq
movq
addq
addq 6rbx ., %rlo

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

26

ex.: dependencies and hazards (1)
addq

subq
movq
addq
addq

where are dependencies?
which are hazards in our pipeline?
which are resolved with forwarding?

26

pipeline with different hazards

example: 4-stage pipeline:
fetch /decode/execute+memory /writeback

addq %rax, %r8
subq %rax, %r9
xorq %rax, %rl0

andq %r8,

%rll

// 4 stage
//

// W

// EM

// D

// 5 stage
/7 W
// M
// E
// D

27

pipeline with different hazards

example: 4-stage pipeline:
fetch /decode/execute+memory /writeback
// 4 stage // 5 stage

addq %rax, %r8 // J// W
subqg %rax, %r9 // W // M
xorq %rax, %rl® // EM // E
andq %r8, %rll // D // D

addq/andq is hazard with 5-stage pipeline

addq/andq is not a hazard with 4-stage pipeline

27

pipeline with different hazards

example: 4-stage pipeline:
fetch /decode/execute+memory /writeback
// 4 stage // 5 stage

addq %rax, %r8 // // W
subq %rax, %r9 // W // M
xorq %rax, %rl® // EM // E
andq %r8, %rll // D // D

more hazards with more pipeline stages

27

exercise: different pipeline
split execute into two stages: F/D/E1/E2/M/W

result only available near end of second execute stage

where does forwarding, stalls occur?

cycle# © 1 2 3 4 5 6 7 8
(1) addq %rcx, %r9 F D E1LE2 M W
(2) addq %r9, %rbx
(3) addq %rax, %r9
(4) movq %r9, (%rbx)
(5) movq %rcx, %r9

28

exercise: different pipeline

split execute into two stages: F/D/E1/E2/M/W
cycle# © 1 2 3 4 5 6 7 8

addq %rcx, %r9 F DE1E2 M W
addq %r9, %rbx

addq %rax, %r9

movq %r9, (%rbx)

29

exercise: different pipeline

split execute into

two stages: F/D/E1/E2/M/W

cycle# 0 1 2 3 4 5 6 7 8

addq %rcx, %r9 F DELE2 M W
addq %r9, %rbx F D'E1LE2 M W

addq %rax, %r

r9 not available yet — can’t forward here
so try stalling in addq's decode...

movq %r9, (%rbx)

F D E1LE2 M W

29

exercise: different pipeline

split execute into two stages: F/D/E1/E2/M/W
cycle# © 1 2 3 4 5 6 7 8

addq %rcx, %r9 F D E1 E2X M W

addq %r9, %rbx F D D'E1E2 M W
after stalling once, now we can forward

addq %rax, %r F F DE1IE2 M W

movq %r9, (%rbx) F DE1LE2 M W

29

exercise: different pipeline

split execute into two stages: F/D/E1/E2/M/W
cycle# © 1 2 3 4 5 6 7 8

addq %rcx, %r9 F D E1 E2\ My W
addq %r9, %rbx F D D'EllJE2 M W
addq %rax, %r9 F F D‘LEl E2 M W

movq %r9, (%rbx) F DE1LE2 M W

29

exercise: different pipeline

split execute into two stages: F/D/E1/E2/M/W
cycle# © 1 2 3 4 5 6 7 8

addq %rcx, %r9 F D E1 E2\ My W

addq %r9, %rbx F D D'EX E% MW

addq %rax, %r9 F F D‘LEl E2 My W
movq %r9, (%rbx) F D‘LEl EZX M W

movq %rcx, %r9 F DE1LE2 M W
29

control hazard

Ox00: cmpqgq %r8, %r9
0x08: je OXFFFF
0x10: addq %rlo, %rll
fetch | fetch—decode decode—execut{ execute—writel execute—writeback |-
cycle [PC A [rB RIA] [R[B] [result
0] Ox0
1 0x8 8 9
2 272 - - 800 (900
3 m”n - - I less than |

30

control hazard

0x00:

cmpqg %r8, %r9

0x08: je OXFFFF
0x10: addq %rlo, %rll

fetch | fetch—decode decode—execut{ execute—writel execute—writeback |-
cycle [PC rA [rB RIA] [R[B] [result
0] Ox0
1 D38 9
2 272 1T - 800 (900
3 - - I less than | | |

OxFFFF if R[8] = R[9]; Ox10 otherwise

30

jXX: stalling?

cmpq %r8, %r9

jne LABEL // not taken

xorq %rl0, %rll

rrlc.)\./q %rll, 0(%ri2) cycle# ® 123456 7 8
cmpq %r8, %r9 F
jne LABEL

(do nothing)

(do nothing)

xorq %rl0, %rill
movq %rll, 0(%rl2)

31

jXX: stalling?

cmpq %r8, %r9

jne LABEL // not taken

xorq %rl0, %rll

rrlc.)\./q %rll, 0(%ri2) cycle# ® 123456 7 8
cmpq %r8, %r9 compare sets flags
jne LABEL F D

(do nothing)

(do nothing)

xorq %rl0, %rill
movq %rll, 0(%rl2)

31

jXX: stalling?

cmpq %r8, %r9

jne LABEL // not taken

xorq %rl0, %rll

rrlc.)\./q %rll, 0(%ri2) cycle# ® 123456 7 8
cmpq %r8, %r9
jne LABEL compute if jump goes to LABEL

(do nothing)

(do nothing)

xorq %rl0, %rill
movq %rll, 0(%rl2)

31

jXX: stalling?
cmpq %r8, %r9

jne LABEL // not taken
xorq %rl0, %rll

movq %rll, 0(%rl2) cycle # 0 1
cmpq 96r“8., %r9 F D
jne LABEL F
(do nothing)
(do nothing)
xorq %rl0, %rll use computed result
movq %rll, 0(%rl2) F

31

making guesses

cmpq %r8, %r9

jne LABEL

xorq %rl0O, %rll
movq %rll, 0(%rl2)

LABEL: addq %r8, %r9
imul %rl3, %rl4

speculate (guess): jne won't go to LABEL

right: 2 cycles faster!; wrong: undo guess before too late

jXX: speculating right (1)

cmpq %r8, %r9

jne LABEL

xorq %rl0, %rll
movq %rll, 0(%rl2)

LABEL: addq %r8, %r9
imul %rl3, %rl4

cycle# 0 1 2 3 456 7 8

cmpq %r8, %r9 F W E
jne LABEL F D
xorq %rl0, %rll F DE

movq %rll, 0(%ri2) F D

jXX: speculating wrong
cycle# © 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F W
jne LABEL
xorq %rlo, %rll

(inserted nop)
movq %rll, 0(%rl2)
(inserted nop) D
LABEL: addq %r8, %r9 F
imul %rl3, %rl4

jXX: speculating wrong
cycle# 0 1 2 3 456 7 8

cmpq %r8, %r9 F W E
jne LABEL F DE
xorq %rl0, %rll F | D | instruction “squashed”

(inserted nop) E -

movq %rll, 0(%rl2) F | instruction “squashed”
(inserted nop) D E
LABEL: addq %r8, %r9 F D
imul %rl3, %rl4 F

E
o E

34

“squashed” instructions
on misprediction need to undo partially executed instructions
mostly: remove from pipeline registers

more complicated pipelines: replace written values in
cache/registers/etc.

35

backup slides

36

modifying cache blocks in parallel
cache coherency works on cache blocks

but typical memory access — less than cache block
e.g. one 4-byte array element in 64-byte cache block

what if two processors modify different parts same cache block?
4-byte writes to 64-byte cache block

cache coherency — write instructions happen one at a time:

processor ‘locks’ 64-byte cache block, fetching latest version
processor updates 4 bytes of 64-byte cache block
later, processor might give up cache block

37

modifying things in parallel (code)

void *sum_up(void *raw_dest) {
int *dest = (int *) raw_dest;
for (int i = 0; i < 64 * 1024 * 1024; ++i) {
*dest += datali];
}

}

__attribute__((aligned(4096)))
int array[1024]; /* aligned = address is mult. of 4096 */

void sum_twice(int distance) {
pthread_t threads[2];
pthread_create(&threads[0], NULL, sum_up, &array[0]);
pthread_create(&threads[1], NULL, sum_up, &array[distance]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

38

performance v. array element gap

(assuming sum_up compiled to not omit memory accesses)

500000000

400000000 +

300000000 A

200000000 A

time (cycles)

100000000 A

0 T T T T T T
10 20 30 40 50 60

distance between array elements (bytes)

70

39

false sharing

synchronizing to access two independent things

two parts of same cache block

solution: separate them

40

	challenge: hazards
	data hazards
	example execution: wrong result, stalling resolution
	better fix: forwarding
	exercise: what forwarding
	forwarding paths
	can't always forward: load-use
	can forward: load-to-store

	dependency v hazard
	with different pipeline? (1)
	control hazards
	idea: branch prediction

	backup slides

