
1

changelog
2 May 2023: the out-of-bounds access (2): correct 254 to 130

2

last time
data flow model/graphs

pipelined execution units in OOO processor
out-of-order: squashing on mispredict/exception

commit instructions in-order and when done
track real registers for committed instructions
if about-to-commit has exception/mispredicted, then reset to those
registers

side-channel attacks — timing, etc.

inferring cache accesses from timing
3

anonymous feedback (1)
“Could you please drop more than one quiz? …”

“Will the final exam be curved? Is there any consideration of dropping the total
weight of the final exam? …”

not planning on changing score distribution
the assignment of overall scores to letter grades will take into account
difficult of final/quizzes/etc.
plan to look at whether how typical scores were gotten corresponds to
department guidelines (e.g. A = ‘demonstrate mastery of all learning
objectives’)

4

reminder: omitted details
virtual v physical addresses

ignoring different in examples
reality: extra work to make physical addresses work

interference for testing code — assuming negligible
reads/writes from cache

5

exercise: inferring cache accesses (1)
char *array;
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer += 1;
}
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

suppose pointer is 0x1000188
and cache (of interest) is direct-mapped, 32768 (215) byte, 64-byte
blocks
what array index should we check?

6

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer = 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) { /* pointer accessed */ }

215 byte direct mapped cache, 64 = 26 byte blocks

9 index bits, 6 offset bits

0x1000188: …0000 0001 1000 1000

array[0] starts at multiple of cache size — index 0, offset 0

to get index 6, offset 0 array[0b1 1000 0000] = array[0x180]
8

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer = 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) { /* pointer accessed */ }

215 byte direct mapped cache, 64 = 26 byte blocks

9 index bits, 6 offset bits

0x1000188: …0000 0001 1000 1000

array[0] starts at multiple of cache size — index 0, offset 0

to get index 6, offset 0 array[0b1 1000 0000] = array[0x180]
8

aside
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer += 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

will this detect when pointer accessed? yes

will this detect if mystery is true? not quite

…because branch prediction could started cache access

9

exercise: inferring cache accesses (2)
char *other_array = ...;
char *array;
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
other_array[mystery] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (TimeAccessTo(&array[i]) > THRESHOLD) {
/* found something interesting */

}
}

other_array at 0x200400, and interesting index is i=0x800, then
what was mystery?

10

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
other_array[mystery] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (TimeAccessTo(&array[i]) > THRESHOLD) { ... }
}

at i=0x800: …0000 1000 0000 0000 (cache index = 0x20)

other_array at 0x200400

Q: 0x200400 + X has cache index 0x20?
0x200400 …0 000 0100 00 00 0000
+ X …? 000 0100 00 ?? ????
0x200400+X …? 000 1000 00 ?? ????

12

exercise: inferring cache accesses (2)
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer = 1;
}
if (TimeAccessTo(&array[index1]) > THRESHOLD ||

TimeAccessTo(&array[index2]) > THRESHOLD) {
/* pointer accessed */

}

pointer is 0x1000188

cache is 2-way, 32768 (215) byte, 64-byte blocks, ???? replacement

what array indexes should we check?
13

PRIME+PROBE
name in literature: PRIME + PROBE

PRIME: fill cache (or part of it) with values

do thing that uses cache

PROBE: access those values again and see if it’s slow

(one of several ways to measure how cache is used)

coined in attacks on AES encryption

14

example: AES (1)
from Osvik, Shamir, and Tromer, “Cache Attacks and
Countermeasures: the Case of AES” (2004)

early AES implementation used lookup table

goal: detect index into lookup table
index depended on key + data being encrypted

tricks they did to make this work
vary data being encrypted
subtract average time to look for what changes
lots of measurements

15

example: AES (2)
from Osvik, Shamir, and Tromer, “Cache Attacks and Countermeasures: the Case
of AES” (2004)

16

reading a value
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
other_array[mystery * BLOCK_SIZE] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...

}
}

with 32KB direct-mapped cache
suppose we find out that array[0x400] is slow to access
and other_array starts at address 0x100000
what was mystery?

17

revisiting an earlier example (1)
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer += 1;
}
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

what if mystery is false but branch mispredicted?

18

revisiting an earlier example (2)
cycle # 0 1 2 3 4 5 6 7 8 9 10 11

movq mystery, %rax F D R I E E E W C
test %rax, %rax F D R I E W C
jz skip (mispred.) F D R I E W C
mov pointer, %rax F D R I E E E W
mov (%rax), %r8 F D R I E W
add $1, %r8 F D R
mov %r8, %rax F D R
…
skip: ... F D R

19

avoiding/triggering this problem
if (something false) {

access *pointer;
}

what can we do to make access more/less likely to happen?

20

reading a value without really reading it
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
if (something false) {

other_array[mystery * BLOCK_SIZE] += 1;
}
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...

}
}

if branch mispredicted, cache access may still happen

can find the value of mystery

21

seeing past a segfault? (1)
Prime();
if (something false) {

triggerSegfault();
Use(*pointer);

}
Probe();

could cache access for *pointer still happen?

yes, if:
branch for if statement mispredicted, and
*pointer starts before segfault detected

22

seeing past a segfault? (2)
operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...
Prime();
if (@2something false@) {

int value = @3ReadMemoryMarkedNonReadbleInPageTable();@
access other_array[value @4* ...@];

}
Probe();

23

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper not with FLUSH+RELOAD instead
of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

24

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper not with FLUSH+RELOAD instead
of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

24

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper not with FLUSH+RELOAD instead
of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

24

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper not with FLUSH+RELOAD instead
of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

24

Meltdown
from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
xor %rax, %rax // rax <- 0

retry:
// rax <- memory[kernel address] (segfaults)

// but check for segfault done out-of-order on Intel at time
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

space out accesses by 4096
ensure separate cache sets and
avoid triggering prefetcher

repeat access if zero
apparently value of zero speculatively read
when real value not yet available

access cache to allow measurement later
in paper not with FLUSH+RELOAD instead
of PRIME+PROBE technique

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

24

Meltdown fix
HW: permissions check done with/before physical address lookup

was already done by AMD, ARM apparently?
now done by Intel

SW: separate page tables for kernel and user space
don’t have sensitive kernel memory pointed to by page table
when user-mode code running
unfortunate performance problem
exceptions start with code that switches page tables

25

reading a value without really reading it
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAllOf(array);
if (something false) {

other_array[mystery * BLOCK_SIZE] += 1;
}
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (CheckIfSlowToAccess(&array[i])) {
...

}
}

if branch mispredicted, cache access may still happen

can find the value of mystery

26

mistraining branch predictor?
if (something) {

CodeToRunSpeculatively()
}

how can we have ‘something’ be false, but predicted as true

run lots of times with something true

then do actually run with something false

27

contrived(?) vulnerable code (1)
suppose this C code is run with extra privileges

(e.g. in system call handler, library called from JavaScript in webpage,
etc.)

assume x chosen by attacker

(example from original Spectre paper)
if (x < array1_size)

y = array2[array1[x] * 4096];

28

the out-of-bounds access (1)
char array1[...];
...
int secret;
...
y = array2[array1[x] * 4096];

suppose array1 is at 0x1000000 and

secret is at 0x103F0003;

what x do we choose to make array1[x] access first byte of
secret?

29

the out-of-bounds access (2)
char array1[...];
...
int secret;
...
y = array2[array1[x] * 4096];
suppose our cache has 64-byte blocks and 8192 sets
and array2[0] is stored in cache set 0

if the above evicts something in cache set 128,
then what do we know about array1[x]?

is 2 or 130

30

the out-of-bounds access (2)
char array1[...];
...
int secret;
...
y = array2[array1[x] * 4096];
suppose our cache has 64-byte blocks and 8192 sets
and array2[0] is stored in cache set 0

if the above evicts something in cache set 128,
then what do we know about array1[x]?

is 2 or 130
30

exploit with contrived(?) code
/* in kernel: */
int systemCallHandler(int x) {

if (x < array1_size)
y = array2[array1[x] * 4096];

return y;
}

/* exploiting code */
/* step 1: mistrain branch predictor */

for (a lot) {
systemCallHandler(0 /* less than array1_size */);

}
/* step 2: evict from cache using misprediction */

Prime();
systemCallHandler(targetAddress − array1Address);
int evictedSet = ProbeAndFindEviction();
int targetValue = (evictedSet − array2StartSet) / setsPer4K;

31

really contrived?
char *array1; char *array2;
if (x < array1_size)

y = array2[array1[x] * 4096];

times 4096 shifts so we can get lower bits of target value
so all bits effect what cache block is used

int *array1; int *array2;
if (x < array1_size)

y = array2[array1[x]];

will still get upper bits of array1[x] (can tell from cache set)

can still read arbitrary memory!
want memory at 0x10000?
upper bits of 4-byte integer at 0x3FFFE

32

really contrived?
char *array1; char *array2;
if (x < array1_size)

y = array2[array1[x] * 4096];

times 4096 shifts so we can get lower bits of target value
so all bits effect what cache block is used

int *array1; int *array2;
if (x < array1_size)

y = array2[array1[x]];

will still get upper bits of array1[x] (can tell from cache set)
can still read arbitrary memory!

want memory at 0x10000?
upper bits of 4-byte integer at 0x3FFFE

32

bounds check in kernel
void SomeSystemCallHandler(int index) {

if (index > some_table_size)
return ERROR;

int x = table[some_table];
switch (other_table[x].foo) {

...
}

}

33

context: Java script
JavaScript: scripts in webpages
for performance, compiled to assembly, run in browser
not supposed to be access arbitrary browser memory
example JavaScript code from paper:
if (index < simpleByteArray.length) {

index = simpleByteArray[index | 0];
index = (((index * 4096)|0) & (32*1024*1024−1))|0;
localJunk ˆ= probeTable[index|0]|0;

}

web page runs a lot to train branch predictor
then does run with out-of-bounds index
examines what’s evicted by probeTable access

34

other misprediction
so far: talking about mispredicting direction of branch

what about mispredicting target of branch in, e.g.:
// possibly from C code like:
// (*function_pointer)();
jmp *%rax

// possibly from C code like:
// switch(rcx) { ... }
jmp *(%rax,%rcx,8)

35

an idea for predicting indirect jumps
for jmps like jmp *%rax predict target with cache:
bottom 12 bits of jmp address last seen target
0x0–0x7 0x200000
0x8–0xF 0x440004
0x10-0x18 0x4CD894
0x18-0x20 0x510194
0x20-0x28 0x4FF194
… …
0xFF8–0xFFF 0x3F8403

Intel Haswell CPU did something similar to this
uses bits of last several jumps, not just last one

can mistrain this branch predictor
36

using mispredicted jump
1: find some kernel function with jmp *%rax

2: mistrain branch target predictor for it to jump to chosen code
use code at address that conflicts in “recent jumps cache”

3: have chosen code be attack code (e.g. array access)
either write special code OR
find suitable instructions (e.g. array access) in existing kernel code

37

Spectre variants
showed Spectre variant 1 (array bounds), 2 (indirect jump)

from original paper

other possible variations:
could cause other things to be mispredicted

prediction of where functions return to?
values instead of which code is executed?

could use side-channel other than data cache changes
instruction cache
cache of pending stores not yet committed
contention for resources on multi-threaded CPU core
branch prediction changes
…

38

backup slides

39

some Linux kernel mitigations (1)
replace array[x] with
array[x & ComputeMask(x, size)]

…where ComputeMask() returns
0 if x > size
0xFFFF..F if x ≤ size

…and ComputeMask() does not use jumps:
mov x, %r8
mov size, %r9
cmp %r9, %r8
sbb %rax, %rax // sbb = subtract with borrow

// either 0 or -1

40

some Linux kernel mitigations (2)
for indirect branches:

with hardware help:
separate indirect (computed) branch prediction for kernel v user mode
other branch predictor isolation changes

without hardware help:
transform jmp *(%rax), etc. into code that
will only predicted to jump to safe locations
(by writing assembly very carefully)

41

only safe prediction
as replacement for jmp *(%rax)

code from Intel’s “Retpoline: A Branch Target Injection
Mitigation”

call load_label
capture_ret_spec: /* <-- want prediction to go here */

pause
lfence
jmp capture_ret_spec

load_label:
mov %rax, (%rsp)
ret

42

inferring cache accesses (1)
suppose I time accesses to array of chars:

reading array[0]: 3 cycles
reading array[64]: 4 cycles
reading array[128]: 4 cycles
reading array[192]: 20 cycles
reading array[256]: 4 cycles
reading array[288]: 4 cycles
…

what could cause this difference?
array[192] not in some cache, but others were

43

inferring cache accesses (2)
some psuedocode:
char array[CACHE_SIZE];
AccessAllOf(array);
*other_address += 1;
TimeAccessingArray();

suppose during these accesses I discover that array[128] is
slower to access
probably because *other_address loaded into cache + evicted
it
what do we know about other_address? (select all that apply)
A. same cache tag B. same cache index C. same cache offset
D. diff. cache tag E. diff. cache index F. diff. cache offset

44

some complications
caches often use physical, not virtual addresses

(and need to know about physical address to compare index bits)
(but can infer physical addresses with measurements/asking OS)
(and often OS allocates contiguous physical addresses esp. w/‘large
pages’)

storing/processing timings evicts things in the cache
(but can compare timing with/without access of interest to check for
this)

processor “pre-fetching” may load things into cache before access
is timed

(but can arrange accesses to avoid triggering prefetcher
and make sure to measure with memory barriers)

some L3 caches use a simple hash function to select index instead
of index bits

45

	cache timing attacks
	exercise: detect this access? (DM)
	exercise: detect this access? (2-way)
	PRIME+PROBE, AES example
	reading a value (1)

	seeing speculation via side channels
	revising array lookup
	reading a value (2)

	meltdown
	well, what else gets speculated?
	vulnerability
	fix

	spectre
	concept: forcing branch misprediction
	contrived? vulnerable code
	array bounds check
	JavaScript exploit
	mispredicted indirect
	more variants?

	backup slides
	software fix
	introduction: observing cache evictions

