
Spring 2023 3130 Final REFERENCE SHEET

1 page table lookup

11 0101 01 00 1011 00 00 1101 1111

×

PTE
size

0x10000

page table

base register

+

data or instruction cache

1101 0011 11
1st PTE
addr.

valid, etc?

split
PTE
parts

cause fault?

×

page
size

+

phys
page
#

phys
addr

2nd PTE
addr.

×

PTE
size

split
PTE
parts

valid, etc?

cause fault?

TLB

00 1101 1111

physical address

virtual address

2 cache organization

valid tag data valid tag data

1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

way 0 way 1

10011 1

index

=

=

tag

AND

AND

set

OR is hit? (1)

offset

data
(B5)

Spring 2023 3130 Final REFERENCE SHEET

3 networking layers
application HTTP, SSH,

SMTP, …
URLs, … … application-defined meanings

transport TCP, UDP, … port numbers, … segments,
datagrams

reach correct program, reliablity/streams

network IPv4, IPv6, … IP addresses, … packets reach correct machine (across networks)
link Ethernet,

Wi-Fi, …
MAC addresses, … frames coordinate shared wire/radio

physical … … … encode bits for wire/radio

4 pipelined processor

PC I$

+ instr

len

register

file

math

D$

read

write

fetch
decode

execute memory

writeback

5 OOO processor

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back

commit

6 selected POSIX functions
• give lock is a pthread_mutex_t and cv is pthread_cond_t

– mutex lock/unlock: pthread_mutex_lock(&lock); pthread_mutex_unlock(&lock);
– pthread_cond_wait(&cv, &lock) — unlock lock + wait on cv’s queue; when woken up, relock

lock and return; can be woken up early by ‘spurious wakeup’
– pthread_cond_signal(&cv) — wake up one waiting thread from cv’s queue
– pthread_cond_broadcast(&cv) — wake up all waiting threads from cv’s queue
– pthread_create(&t, NULL, start_function, a) — create thread (ID stored in t) that will

run start_function with the argument argument
– pthread_join(t, &ret) — wait for thread t to finish, collect its return value in ret
– create new process copying current: fork() — return new pid in parent (old), 0 in child (new)
– waitpid(pid, 0, NULL) — wait for process with ID pid to terminate

Spring 2023 CS 3130 Final, Page 1 of 15

variant

X Computing ID:

Name:

Write your name and computing ID above. Write your computing ID at the top of each page in
case pages get separated. Sign the honor pledge below.

Generally, we will not answer questions about the exam during the exam time. If you think a
question is unclear and requires additional information to answer, please explain how in your

answer. For multiple choice questions, write a * next to the relevant option(s) along with your
explanation.

On my honor as a student I have neither given nor received aid on this exam.

rev. 20230505C

Spring 2023 CS 3130 Final, Page 2 of 15

variant

X Computing ID:

1. Suppose the following sequence of events happens on a single-core Unix-like system running three
single-threaded processes A, B, and C:

1. Process A opens a file
2. Process A starts to read from the file, but the data must first be transferred from the disk to

memory
3. While process A is waiting, process B runs
4. Process B performs some computations
5. Process B is paused temporarily, and Process C runs and performs some computations
6. Process B resumes running and sends a signal to process C
7. Process C’s signal handler starts running
8. Process C’s signal handler prints out a message to the terminal
9. The contents of process A’s file are retrieved from disk, and as a result Process A resumes running

(a) (4 points) During which of the steps above is a system call likely to occur? (Write step numbers from
the list above.)

(b) (4 points) During which of the steps above is a non-system-call exception likely to occur? (Write step
numbers from the list above.)

(c) (4 points) While process C’s signal handler starts running, the value of the register %r8 in Process A
is most likely stored .

� on the disk’s controller
� in one of the registers on the processor
� on process C’s stack
� on process B’s stack
� in some part of the operating system’s memory
� none of the above, explain:

(d) (4 points) Immediately after process C’s signal handler starts, . Select
all that apply.

� the processor will be in kernel mode
� process C’s registers or stack will contain a pointer to process B’s code that triggered the

signal
� process C’s registers will have a pointer to process B’s stack
� local variables used during process C’s computations (step 5) will be on process C’s stack

rev. 20230505C

Spring 2023 CS 3130 Final, Page 3 of 15

variant

X Computing ID:

2. For the following questions:
• consider a two-way 217 byte cache with 28-byte blocks, an LRU replacement policy, a write-allocate

policy, and a write-back policy, and
• assume all addresses are physical addresses and that virtual memory is not in use

(a) (4 points) The value at the address 0x123456 will be stored in the same set of the cache as the value
from address . Select all that apply.

� 0x123500
� 0xF23456
� 0x123123
� 0x12345

(b) (12 points) Select the correct options to complete the following table.
For the ‘write to main memory while handling?’ column, select ‘yes’ if before completing the cache
read or write, the cache should start a write to the main memory (or the next level of cache).
Assume the cache is initially empty and all accesses are to a single byte, and performed in the order
shown below.
read/write tag set index offset hit/miss? write to memory while handling?
write 0x10 0 4 � hit � miss � yes � no
write 0x20 0 8 � hit � miss � yes � no
write 0x40 0 0 � hit � miss � yes � no
read 0x20 0 4 � hit � miss � yes � no
read 0x3F 0 0 � hit � miss � yes � no
read 0x20 0 8 � hit � miss � yes � no
read 0x10 0 4 � hit � miss � yes � no

(c) (8 points) Consider the following C snippet:
array2[array1[x] * 0x1000]

where array2 and array1 are both arrays of 1-byte unsigned chars. Assume the compiler does not
optimize away the accesses to the two arrays (even if those values are not used).
Suppose array1 and array2 both have physical addresses which are multiples of 220 (and contiguous in
physical memory). We determine (via a PRIME+PROBE side channel) that executing the above C
snippet evicts from cache sets with index 0x10 and 0x20. Based on this information, give a possible
value of x and of array1[x]:

• x:

• array1[x]:

Use the box below to show any work:

rev. 20230505C

Spring 2023 CS 3130 Final, Page 4 of 15

variant

X Computing ID:

3. This set of questions refers to the following assembly function (which is also reproduced on the next
page):

countOnes:
xorl %ecx, %ecx
xorl %eax, %eax

.L2:
movl %edi, %edx /* A */
shrl %cl, %edx /* B */
incl %ecx /* C */
andl $1, %edx /* D */
addl %edx, %eax /* E */
cmpl $32, %ecx /* F */
jne .L2 /* G */
ret

(a) Suppose the countOnes function above is executed on a five-stage pipelined processor (where the
pipeline stages are fetch, decode (register read), execute, memory, writeback).

i. (5 points) During one iteration of the loop that starts at .L2 and ends at jne .L2, we would
expect which of the following forwarding to occur? (It’s possible that not all needed forwarding is
listed.) Select all that apply.

� of %edx’s value from A to B
� of %edx’s value from A to D
� of %ecx/%cl’s value from B to C
� of %edx’s value from B to D
� of %edx’s value from D to E

ii. (4 points) If the processor predicts the jne .L2 as taken, then, during the second iteration of
the loop, we would expect instruction A’s decode stage to run at the same time as an instance of
instruction ’s memory stage.

� B (shrl %cl, %edx)
� C (incl %ecx)
� D (andl $1, %edx)
� E (addl %edx, %eax)
� F (cmpl $32, %ecx)
� G (jne .L2)
� none of the above

rev. 20230505C

Spring 2023 CS 3130 Final, Page 5 of 15

variant

X Computing ID:

countOnes:
xorl %ecx, %ecx
xorl %eax, %eax

.L2:
movl %edi, %edx /* A */
shrl %cl, %edx /* B */
incl %ecx /* C */
andl $1, %edx /* D */
addl %edx, %eax /* E */
cmpl $32, %ecx /* F */
jne .L2 /* G */
ret

(b) For the following questions, consider the countOnes function executing on an out-of-order processor
designs that can fetch, rename, execute, and writeback multiple instructions per cycle. Answer the
following questions about what would be possible to be done simultaneously assuming enough capacity
(in terms of instruction queue size, reorder buffer size, number of instructions fetched per cycle, etc.)

i. (5 points) After register renaming, it is possible for two instances of instruction C to be in the
instruction queue at the same time. What could be true about these two instances of instruction
C? Select all that apply.

� they could have the same destination register
� they could have different destination registers
� they could have the same source register
� they could have different source registers
� the destination register of one could be the same as the source register of the other

ii. (5 points) Within one iteration of the loop above, what instructions could compute their results at
the same time as instruction D (andl $1, %edx) computes its results. Select all that apply.

� instruction A (movl %edi, %edx)
� instruction B (shrl %cl, %edx)
� instruction C (incl %ecx)
� instruction E (addl %edx, %eax)
� instruction F (cmpl $32, %ecx)

iii. (4 points) It is possible for the processor to compute the results of instruction from
two different iterations of the loop at the same time. Select all that apply.

� instruction B (shrl %cl, %edx)
� instruction C (incl %ecx)
� instruction D (andl $1, %edx)
� instruction E (addl %edx, %eax)

rev. 20230505C

Spring 2023 CS 3130 Final, Page 6 of 15

variant

X Computing ID:

4. (16 points) Consider a system for reserving tickets to some event. The system is implemented using
multiple threads, where each customer has a dedicated thread to perform actions on their behalf.
Tickets can either be available, pending, or purchased.
When a customer purchases a ticket, their thread uses the ReserveTicket function to mark it as
pending. This will wait for a ticket to be available or for all tickets to be purchased. If all tickets are
purchased, the function returns NULL; otherwise, the customer either decides to purchase it, using
the PurchaseTicket function, or declines to purchase it using the DeclineToPurchaseTicket
function.
Fill in the THREE blanks in the following C code for implementing this scheme using monitors.
(You may find it helpful to refer to the reference sheet’s list of POSIX functions.)

typedef struct {
int is_pending;
int is_available;
int is_purchased;
const char *other_info;

} Ticket;
Ticket tickets[NUM_TICKETS];
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t available_cv = PTHREAD_COND_INITIALIZER;
int available_tickets = NUM_TICKETS;
int pending_tickets = 0
int purchased_tickets = 0;

Ticket *ReserveTicket() {
pthread_mutex_lock(&lock);

while (___) { /* BLANK 1 */
pthread_cond_wait(&available_cv, &lock);

}
Ticket *result = NULL;
if (purchased_tickets != NUM_TICKETS) {

available_tickets -= 1;
pending_tickets += 1;
for (int i = 0; i < NUM_TICKETS; ++i) {

if (tickets[i]->is_available) {
tickets[i]->is_available = 0;
tickets[i]->is_pending = 1;
result = tickets[i];
break;

}
}

}
pthread_mutex_unlock(&lock);
return result;

}

rev. 20230505C

Spring 2023 CS 3130 Final, Page 7 of 15

variant

X Computing ID:

(continued on next page)

rev. 20230505C

Spring 2023 CS 3130 Final, Page 8 of 15

variant

X Computing ID:

(continued from previous page)

void PurchaseTicket(Ticket *ticket) {
pthread_mutex_lock(&lock);
ticket->is_pending = 0;
ticket->is_purchased = 1;
purchased_tickets += 1;
pending_tickets -= 1;
if (purchased_tickets == NUM_TICKETS) {

___ /* BLANK 2 */
}
pthread_mutex_unlock(&lock);

}

void DeclineToPurchaseTicket(Ticket *ticket) {
pthread_mutex_lock(&lock);
ticket->is_pending = 0;
ticket->is_available = 1;
available_tickets += 1;
pending_tickets -= 1;

___ /* BLANK 3 */
pthread_mutex_unlock(&lock);

}

rev. 20230505C

Spring 2023 CS 3130 Final, Page 9 of 15

variant

X Computing ID:

5. Suppose two programs A and B communicate over a network using UDP. (Recall that UDP provides the
‘mailbox’ model of communication we discussed in lecture, where each message is called a ‘datagram’.)
Program B accepts the following commands:

• to list the files in a directory with a particular name; program B will send the list of files in reply
• to create a file with a particular name and particular contents; program B will send a boolean

indicating whether the creation was successful in reply
Program B receives each command in a single datagram, and sends any reply as as a single datagram.
For the following questions, assume that datagrams may be lost or reordered, but that datagrams
are not otherwise corrupted in transit.

(a) (5 points) Suppose A and B are on different local networks, so their UDP datagrams need to be sent
via multiple intermediate routers.
Refer to the reference sheet’s summary of layers in the TCP/IP networking model.
When program B sends a reply to program A, the machine on which program B is running will most
likely send a frame which will . Select all that apply.

� have a destination MAC address of the router closest to A
� have a destination MAC address of the router closest to B
� contain a packet with a destination IP address identifying the router closet to A
� contain a packet with a source IP address identifying the machine program B is running on
� contain a datagram with a destination port number the same as the source port number in

the datagram B received from A
(b) (6 points) Program A sends the following commands in this order:

• to create a file ‘foo’ with some contents in directory ‘bar’;
• to list the files in directory ‘bar’

Then, it waits replies to these two commands and after waiting for a long time receives only a reply to
its first command:

• a list of files in directory ‘bar’ which does not include ‘foo’
Could the file ‘foo’ have been created? Explain briefly.

rev. 20230505C

Spring 2023 CS 3130 Final, Page 10 of 15

variant

X Computing ID:

6. Suppose two programs A and B communicate over a network. They use public-key encryption and
digital signatures to have A communicate what packages for B to deliver to third-parties. A sends
the following messages, each of which is encrypted with B’s public encryption key and signed with A’s
private signing key. B checks the signatures, decrypts the messages, and acts on them.

1. deliver a package of type X to C
2. deliver a package of type Y to D
3. deliver another package of type X to C
4. deliver another package of type Y to D

(a) (6 points) An attacker with sufficient control over the network could cause B to send four packages of
type X to C despite A not generating encrypted and signed messages to do so. (The attacker has no
access to A or B’s private keys.) Explain briefly how the attacker would do this.

(b) (6 points) Describe briefly a modification A and B could make to how they communicate that would
avoid the scenario in the previous question. Include both any changes to the contents of messages and
to how A or B verify the new message contents.

rev. 20230505C

Spring 2023 CS 3130 Final, Page 11 of 15

variant

X Computing ID:

7. Suppose a system has:
• two-level page tables
• 30-bit virtual addresses
• 4096-byte (212 byte pages)
• 8-byte page table entries
• page tables at each level with 512 entries (so page tables take up 4096 bytes)
• a 8-entry, 2-way TLB (translation lookaside buffer)

(a) (8 points) Consider a process accessing the virtual address 0x801090 when the page table base register
is 0x400000 (which is a physical byte address, not a physical page number).
Fill in all the blanks below:
To perform this access, first the processor will access a first-level page table entry at physical address

.

Then, if that page table entry is valid (and has appropriate permission bits) and contains physical page
number 0x9, the processor will access a second-level page table entry at physical address

.

Then, if that page table entry is valid (and has appropriate permission bits) and contains physical page
number 0x4 the processor will access data from physical address

.

(b) As a result of the access described in the previous question, the TLB will be modified.
i. (3 points) Which set(s) of the TLB will be modified? (Identify the set index(es).)

ii. (5 points) What (if anything) of the following will be stored in the TLB as a result of the access?
Select all that apply.

� the first-level page table entry
� one or more other entries from the first-level page table
� the second-level page table entry
� one or more other entries from a second-level page table
� the data from the final physical address accessed

rev. 20230505C

Spring 2023 CS 3130 Final, Page 12 of 15

variant

X Computing ID:

(c) (Attributes reproduced from previous page:
• two-level page tables
• 30-bit virtual addresses
• 4096-byte (212 byte pages)
• 8-byte page table entries
• page tables at each level with 512 entries (so page tables take up 4096 bytes)
• a 8-entry, 2-way TLB (translation lookaside buffer)

)
Suppose a process on this system has the following memory accessible to it for reading or writing or
executing without a page fault or other exception occurring:

• addresses 0x1000–0x4FFF
• addresses 0x6000–0x6FFF
• addresses 0x7FFE000–0x7FFFFFF
i. (4 points) Assuming only the above addresses are accessible, how much memory would need to be

allocated to the process’s page tables? (Do not include space for the process’s data and code.)

ii. (5 points) Suppose the process forks to create a new (child) process and the system’s OS uses
copy-on-write to implement fork(). To save as much space as possible, the OS copies as little as
possible as part of its copy-on-write implementation.
Suppose the child process writes 8 bytes to 0x7FFE800 immediately after the fork. Then,

. Select all that apply.
� the parent (original) and child (new) process may have the same first-level page table
� the parent and child process will both store the data for virtual address 0x2000 in the

same physical address
� the second-level page table entry for virtual address 0x2000 in the child process will be

marked as writable
� the second-level page table entry for virtual address 0x7FFE000 in the child process will

be marked as writable
� the second-level page table entry for virtual address 0x7FFF000 in the child process will

be marked as writable

rev. 20230505C

Spring 2023 CS 3130 Final, Page 13 of 15

variant

X Computing ID:

8. Consider the following C snippets:

int global = 0;
void *foo(void *arg) {

int *p = (int*) arg;
printf("%d %d\n", global, *p);
global = *p;
return NULL;

}

void function1(int v) {
pid_t pid = fork();
if (pid == 0) { /* in child process */

foo(&v);
exit(0);

} else {
waitpid(pid, 0, NULL);

}
}

void function2(int v) {
pthread_t p;
pthread_create(&p, NULL, foo, &v);
pthread_join(p, NULL);

}

Assume none of the library functions called by the code above fail, all relevant header files are included,
and that no other relevant code is running during the function calls described below.

(a) (6 points) When function1 is called, which of the following is true? Select all that apply.
� when it returns, the value of global may have changed
� when it returns, a newly created process or thread may be active
� it will only return in a new process (with a different pid than when it was called)
� the *p in the printf call in foo may read *p from another thread’s stack
� the *p in the printf call in foo could access an out-of-scope value and therefore crash
� if the function is run on a single-core system, then one or more context switches will occur

while it runs
(b) (5 points) When function2 is called, which of the following is true? Select all that apply.

� when it returns, the value of global may have changed
� when it returns, a newly created process or thread may be active
� the *p in the printf call in foo may read *p from another thread’s stack
� the *p in the printf call in foo could access an out-of-scope value and therefore crash
� if the function is run on a single-core system, then one or more context switches will occur

while it runs

rev. 20230505C

Spring 2023 CS 3130 Final, Page 14 of 15

variant

X Computing ID:

9. Suppose we have a C program that is built from four files: utilities.c, utilities.h, parsing.c,
parsing.h, and main.c.
Each .c file with a corresponding .h file #includes that .h file.
main.c and parsing.c each use functions that are defined in utilities.c and declared in utilities.h, and
they #includes utilities.h in order to do so.
main.c also uses functions that are defined in parsing.c, and #includes parsing.h in order to do so.

(a) (5 points) In a Makefile to build this program, a possible rule might look like:
main.o: ???

clang -Wall -c -o main.o main.c
where ??? represents an omitted list of dependencies. Which of the following should be on that list?
Select all that apply.

� main.c
� main.s
� main.o
� utilities.c
� utilities.h
� utilities.o
� parsing.c
� parsing.h
� parsing.o

(b) (5 points) When running make and the above rule is triggered, make will run the command clang
-Wall -c -o main.o main.c.
Which of the following is true about what happens during this process? Select all that apply.

� the make program will make a system call to create a new process
� the clang program will make a system call to open parsing.h
� the command will fail if the current user is not listed as the owner of main.c
� the page table used by make will be the same page table used by clang
� the process running clang will be the parent of the process running make

rev. 20230505C

Spring 2023 CS 3130 Final, Page 15 of 15

variant

X Computing ID:

10. (8 points) Consider the following C code:

struct ItemList {
int key, value;
struct ItemList *next, *prev;

};

struct HashBucket {
pthread_mutex_t lock;
struct ItemList *list_head;

};

struct HashBucket buckets[HASH_SIZE];

int Hash_Move(int from_key, int to_key) {
struct HashBucket *from = buckets[Hash(from_key)];
pthread_mutex_lock(&from->lock);
struct ItemList *item;
item = FindItemInList(&from->list_head);
item->key = to_key;
if (!item) { pthread_mutex_unlock(&from->lock); return 0; }
struct HashBucket *to = buckets[Hash(to_key)];
if (to != from) {

pthread_mutex_lock(&to->lock);
RemoveItemFromList(&from->list_head, item);
AddItemToList(&to->list_head, item);
pthread_mutex_unlock(&to->lock);

}
pthread_mutex_unlock(&from->lock);

}

Note that this code relies on a hash function called Hash() which is not shown, but converts an
arbitrary int to a number between 0 and HASH_SIZE - 1, inclusive.
If two calls Hash_Move(A, B) and Hash_Move(C, D) are made simultaneously, it is possible for a
deadlock to occur, for certain values of A, B, C, and D, even if A, B, C, and D are all different
from each other.
Briefly describe what would be true about these distinct values of A, B, C, and D that can trigger the
deadlock. (My answer is in the form of a C expression.)

rev. 20230505C

