CS02 (CS3130)

changelog [since lecture]

C exericse (2): correct return type of mystery to void
warmup: correct due date for this semester

waitlist: adjust to reflect lecture waitlist being current constraint

themes

automating building software
libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

themes

automating building software
libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

make

$./foo.exe

$ edit readline.c

$ make

clang -g -0 -Wall -c readline.c -o readline.o

ar rcs terminal.o readline.o libreadline.a

clang -o foo.exe foo.o foo-utility.o -L. -lreadline

$

themes

automating building software
libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

address translation

Process A
addresses
“virtual”

real memory
“physical”

mapping
(set by OS)

Process A code

Process B code

Process A data

Process B data

OS data

address translation

Process A

real memory
“physical”

addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

Process A code

Process B code

Process A data

Process B data

OS data

address translation

Process A
addresses
“virtual”

mapping
(set by OS)

real memory
“physical”

Process A code

Process B code

Process A data

Process B data

OS data

program addresses are ‘virtual’
real addresses are ‘physical’
can be different sizes!

address translation

real memory
“physical”

Process A

dd mapping Process A code

addresses

“virtual” (set by O5) <: Process B code
Process A data

i ?
stored in processor? Process B data

format?

OS data

address spaces
illuision of dedicated memory

real memory

Process A mapping Process A code
addresses (set by OS) Process B code
/ Process A data

——»| Process B data

Process B mapping
addresses (set by OS) > 0OS data

..... » = kernel-mode only

trigger exception

address spaces

illuision of dedicated memory

Process A
addresses

Process B
addresses

chose one during context switch

mapping

(set by OS)

mapping

(set by OS)

» = kernel-mode only

real memory

Process A code

Process B code

Process A data

Process B data

OS data

trigger exception

themes

automating building software
libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

keyboard input timeline

read_input.exe

read system call

read_input.exe

| = operating system

from keyboard

10

time multiplexing

time

Y

11

time multiplexing

Processor:

time

call get_time
// whatever get_time does
movq %rax, %rbp
million cycle delay

call get_time
// whatever get_time does
subq %rbp, %rax

Y

11

time multiplexing

time >

call get_time
// whatever get_time does
movq %rax, %rbp

million cycle delay

call get_time
// whatever get_time does
subq %rbp, %rax

multiple cores+threads

core 1: ssh

multiple cores? each core still divided up

12

multiple cores+threads

core 1: ssh

one program with multiple threads

12

themes

automating building software
libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

13

permissions

$ 1s /u/other/secret

1s: cannot open directory '/u/other/secret': Permission denied
$ shutdown

shutdown: Permission denied

14

themes

automating building software
libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

15

layers

application

HTTP, SSH, SMTP, ...

application-defined meanings

transport

TCP, UDP, ..

reach correct program,
reliablity /streams

network IPv4, IPv6, .. reach correct machine
(across networks)

link Ethernet, Wi-Fi, ... coordinate shared wire/radio

physical encode bits for wire/radio

16

names and addresses

name address

logical identifier location /how to locate

variable counter memory address Ox7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36

DNS name mail.google.com IPv4 address 216.58.217.69

DNS name mail.google.com IPv6 address 2607: f8b0:4004:80b: :2005
DNS name reiss-t3620.cs.virginia.edu | IPv4 address 128.143.67.91

DNS name reiss-t3620.cs.virginia.edu | MAC address 18:66:da:2e:7f:da
service name https port number 443

service name ssh port number 22

17

secure communication?
how do you know who your socket is to?
who can read what's on the socket?

what can you do to restrict this?

18

themes

automating building software
libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

19

2004 CPU

| | B
| Floating Point Unit

Load/Store | |

@
8
£
£
£
=1
i E
5
E
=
=]
a

Clock Generator e: approx 2004 AMD press image of Opteron die;
oY x register location via chip-architect.org (Hans de Vries) 20
(N

2004 CPU
/\Registers

=
ing Point Unit

Interface

oy
=1
%3
]
=
[-5
(=]
a

Clock Generator e: approx 2004 AMD press image of Opteron die;
oY x register location via chip-architect.org (Hans de Vries) 20
(N

2004 CPU

Registers
L1 cache

T
isng Point Unit

@
&8
=
-
oy
=1
%3
]
=
[-5
(=]
a

Clock Generator e: approx 2004 AMD press image of Opteron die;
oY x register location via chip-architect.org (Hans de Vries) 20
(N

2004 CPU

Registers
— L1 cache
JFloalbrgnt Uni nEEnEnEnane L2 cache

Scan Ahgn
ro-code

Clock Generator e: approx 2004 AMD press image of Opteron die;
Yo ¥ x register location via chip-architect.org (Hans de Vries) 20

2004 CPU

Registers
— L1 cache
JFloalbrgnt Uni nEEnEnEnane L2 cache

Scan Ahgn
ro-code

Clock Generator e: approx 2004 AMD press image of Opteron die;
Yo ¥ x register location via chip-architect.org (Hans de Vries) 20

2004 CPU

Registers
L1 cache
L2 cache
L3 cache

ing' Paint Unit

Clock Generator e: approx 2004 AMD press image of Opteron die;
Yo ¥ x register location via chip-architect.org (Hans de Vries) 20

2004 CPU

Registers

== ~1ns L1 cache

o ing Poine Unie e ~ 5 ns L2 cache
~ 20 ns L3 cache

—="DDR Memoryin

Clock Generator e: approx 2004 AMD press image of Opteron die;
Yo ¥ x register location via chip-architect.org (Hans de Vries) 20

some performance examples

examplel:
movg $10000000000, %rax
loopl:

addq %rbx, %rcx
decq %rax

jge loopl

ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movg $10000000000, %rax
loop2:

addq %rbx, %rcx
addq %r8, %r9
decq %rax

jge loop2

ret

about 40B instructions
my desktop: approx 2.65 sec

21

some performance examples

examplel:
movg $10000000000, %rax
loopl:

addq %rbx, %rcx
decq %rax

jge loopl

ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movg $10000000000, %rax
loop2:

addq %rbx, %rcx
addq %r8, %r9
decq %rax

jge loop2

ret

about 40B instructions
my desktop: approx 2.65 sec

21

C exercise

int array[4] = {10,20,30,40};

int *p;

p = &array[0];

p += 23

p[1l] += 1;

array =

A. compile or runtime error B. {10,20,30,41}
C. {10,20,32,41} D. {10,21,30,40}
E. {12,21,30,40} F. none of these

22

C exercise (2)

int *array2[4]; int arrayl[4]
void mystery(int **p) {
*p = &arrayl[2];

}
int main() {
int **q;
q = array2;
mystery(q);
arrayl[1l] = *q;
, cen
arrayl =
A. compile or runtime error B.
C. {10,30,30,40} D.
E. {10,20,10,20} F.

{10,20,30,40};

{10,10,30,40}
{10,10,20,30}
none of these

23

some avenues for review

review CSO1 stuff

labs 9-12 (of last Fall)
https://researcherlll.github.io/uva-csol-F23-DG/

exercises we've used in the past:

implement strsep library function
implement conversion from dynamic array to linked list

24

https://researcher111.github.io/uva-cso1-F23-DG/

some pointer stuff int array[3]={0x12,0x45,0x67};
0x040 int single = 0x78;
0x038 int *ptr;

Ox030
0x028
0x020
Ox018
Ox010
Ox008
OxXO000 25

some pointer stuff int array[3]={0x12,0x45,0x67};

0x040 int single = 0x78;
int *ptr;

Ox038 array[2]: Ox67
array[1l]: Ox45
Ox030 array[0]: Ox12

0x028 single: 0Ox78

ptr = 2727
Ox020
Ox018
Ox010
Ox008
OxXO000 25

some pointer stuff int array[3]={0x12,0x45,0x67};

0x040 int single = 0x78;
int xptr;

Ox038 array[2]: Ox67 P ’

array[1l]: Ox45
0x030 array[0]: Ox12| *p = B; compile error
0x028 single: Ox78

ptr = 22?2

Ox020
Ox018
Ox010
Ox008

OxXO000 25

some pointer stuff int array[3]={0x12,0x45,0x67};
0x040 int single = 0x78;

int *ptr;
Ox038 array[2]: Ox67 P ’

array[1l]: Ox45
O0X030 [rray[e]: ox12 ptr = &single;

ox028 L_STngle: 0X78 | ot = (ntx) OX28; adir of singe

ptr: 0x28
Ox020
Ox018
Ox010
Ox008
OxXO000 25

some pointer stuff .

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: 0Ox78

ptr: 0x28

t array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

ptr = &single;
ptl’ (-int*) 0X28; addr. of single

ptr 83 compile error

pointer to unknown place

25

some pointer stuff

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: OxFF

ptr: 0x28

int array[3]={0x12,0x45,0x67};

int single = 0x78;
int *ptr;
ptr = &single;

*ptr = OXFF;

25

some pointer stuff .

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: 0Ox78

ptr: 0x2C

nt
int
int

ptr
ptr
ptr

array[3]={0x12,0x45,0x67};

single = 0x78;
*ptr;

= array;
&array[0];
(int*x) 0x2C;

25

some pointer stuff .

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: 0Ox78

ptr: 0x2C

nt array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

ptr = array;
ptr = &array[0];
ptr = (intx) 0x2C;

ptr = O]; compile error

M

pointer to unknown place

25

some pointer stuff

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: OxFF

array[1l]: Ox45

array[0]: Ox12

single: 0Ox78

ptr: 0x2C

int array[3]={0x12,0x45,0x67};

int single =
int *ptr;
ptr = &array[0];

OX78;

ptr[2] = OxFF;
*(ptr + 2) = OxFF;

int xtempl; templ
*templ = OxFF;

int *temp2; temp2
*temp2 = OxFF;

ptr + 2;

&ptr[2];

25

some pointer stuff

Ox040
Ox038
0x030
Ox028
Ox020
Ox018
Ox010
Ox008
OxXO000

array[2]: Ox67

array[1l]: Ox45

array[0]: Ox12

single: ..

ptr: 0x2C

int array[3]={0x12,0x45,0x67};

int single = 0x78;
int *ptr;

void change_arg(int *x) {

*Xx = compute_some_value();

}

change_arg(&single);

25

waitlists
2p, 3:30p heavily limited by room capacity!

if you are on that waitlist, suggest changing to 5p/6:30p

(changed after lecture:)

will increase course capacity soon
as of Thursday lecture, limited by lecture capacity

make sure you don't have non-capacity restriction
e.g. credit hour limit, time conflict

26

labs
attend lab in person and get checked off by TA, or

(most labs) submit something to submission site and we'll grade it

submit to submission site? don't care if you attend the lab
more strict about submissions without checkoffs
in-person lab checkoff of incomplete lab at least 50% credit

some labs will basically require attendance

or contact me for other arrangements if you can't (sick, etc.)
logistically won't work otherwise — e.g. code review

if can't make lab in-person (example: sick)
let me know, can arrange late/alternate checkoff

27

lab collaboration and submissions

please collaborate on labs!

when working with others on lab and submitting code files

please indicate who you worked with in those files
via comment or similar

28

lab space

if labs are full, might kick out students from ‘wrong’ lab section

29

homeworks

several homework assignments
done individually

generally due on Fridays

(tentative dates on schedule)

30

homework /lab automatic testing

some homeworks/labs have automatic testing

with some delay after you submit
usually 10s of minutes
depending on assignment, number of submissions in queue
if you submit very early, testing program might not be setup yet

when testing program doesn’t understand/can’t test something,
left for manual grading (“not yet graded”)

intention is that testing results are not surprises
if you did some manual testing (no hidden requirements, etc.)

if you think testing program made a mistake,
please submit regrade request

31

warmup assignment
first homework

due Friday 2 Feb

write C function to split a string into array of strings
with dynamic memory allocation

write C program to call function using input/command-line
arguments

write Makefile for it (next topic, next week’s lab)

32

quizzes

released evening after Thursday lecture
starting next week

due 15 minutes before lecture on Tuesdays

about lecture and/or lab from the prior week
5-6ish questions

individual, open book, open notes, open Internet

33

quizzes and work /comments
quizzes will have place for comments/work
will be used to do grading

delay: about 1 week after quiz is due
please use so we can give partial credit

if you find possible error in quiz question
please make your best guess about was meant
and explain what you did in the comemnts

34

on help on quiz questions

| and the TAs won't answer quiz questions...

but we will answer questions about the lecture material, etc.

(and TAs (not you) are responsible for knowing
what they can't answer
but we'd prefer you don't try to test those limits)

35

going over past quizzes

have in past gone over quiz Qs in lecture

either when a lot missed it or
on request in lecture

also fine office hour/Piazza question

36

readings
in lieu of textbook, have readings

mostly written by Prof Tychnoveich (now at UIUC) with edits by
me

on website; should be indicated with corresponding lecture

readings often link to alternative/supplemental readings on topic

37

lecture + assignment sync

generally:

quiz after lecture and/or lab coverage
labs after lecture coverage

homework after lab coverage

means homework (and sometimes quiz)
may be relatively delayed from lecture coverage

38

exams

1 final exam
likely in-person
see official exam schedule

no midterms — instead:
quizzes count a lot

39

development enviroment

we will test via something like SSH into portal
officially supported environment

no restrictions re: |IDEs
but make sure you test/know how to run from command line

many students had success with VSCode + its SSH support

40

some notes on VSCode
| don’t use VSCode (I use vim via SSH+tmux...)

but many of our TAs do; their advice:..

use SSH support to run on portal (dept machine)
tutorial in last semester’s CS 2130 lab (linked off main course website)

install Microsoft's C/C++ extension
set C standard in settings as ‘gnul7’ or similar

install Microsoft’'s Makefile Tools extension

41

getting help

office hours — calendar will be posted on website

mix of in-person and remote, indicated on calendar
remote OH will use Discord + online queue
in-person OH may or may not — indicated on whiteboard, probably

Piazza
use private questions if homework code, etc.

emailing me (preferably with ‘3130’ in subject)

42

collaboration (1)

labs — you can/should work with other students

everyone should understand the work submitted
we may ask questions/etc. to check on occassion

homeworks — individual

write your own code / do not share your code

can ask/look up conceptual questions of others

others includes other students, Q&A sites, code generation tools, etc.
cite any sources you use (comments in code)

43

collaboration (2)

quizzes — individual

but open book+-notes+-etc.

can/should have help reviewing lecture/readings/etc.
legitimate questions for office hours

don't ask other students, stack overflow, gen Al tools, etc. the
quiz questions

don't try to find exactly the quiz question on stack overflow

44

feedback

anonymous feedback on Canvas

would appreciate feedback (esp. when | can do something)

(but not a good way to ask for regrades, etc.)

45

late policy
no late quizzes

one quiz dropped (unconditionally)

90% credit for 0—72 hours late homeworks

for labs that allow submission only

lab submission due time is 11:59am the next day
90% credit for 0-24 hours late

no late lab checkoffs except by special arrangement

46

excused lateness

special circumstances?
illness, emergency, etc.

contact me, we'll figure something out

please don't attend lab/etc. sick!

47

attendance

| won't take attendance in lecture

| will attempt to have lecture recordings
sometimes there may be issues with the recording

48

files in building C programs [dynamic linking]

’ main.c ‘ main.h extra.h | stdio.h extra.c

Y Y

main.o extra.o (system files)
4
program . e
--------- loads at runtime - libc.so
executable | L T

files in building C programs [dynamic linking]

’ main.c ‘ main.h extra.h | stdio.h extra.c

" "
main.o extra.o (system files)
4
program . B
--------- loads at runtime - libc.so
executable | LT T

clang -c main.c
clang -c extra.c

49

files in building C programs [dynamic linking]

’ main.c ‘ main.h extra.h | stdio.h |extra.c

Y

main.s extra.s
main.o extra.o (system files)
4
program . A
--------- loads at runtime - libc.so
executable | T T

clang -S -c main.c
clang -S -c extra.c

files in building C programs [dynamic linking]

’ main.c ‘ main.h extra.h | stdio.h extra.c
Y Y
main.o extra.o (system files)
,,,,,,,,,,, o
Y
P . e
program ... loads at runtime - libc.so
executable | " L

clang -o program main.o extra.o

49

files in building C programs [dynamic linking]

’ main.c ‘ main.h extra.h | stdio.h extra.c

Y Y

main.o extra.o (system files)
Y
rogram|
PTOgTami ... loads at runtime - libc.so
executable | LT
./program

49

files in building C programs [static linking]

’ main.c ‘ main.h extra.h | stdio.h |extra.c

v Y R
@g @g (compiler files) libc.a
\
program

executable

file extensions

name

.C C source code

.h C header file

.S (or .asm) assembly file

.0 (or .obj) object file (binary of assembly)

(none) (or .exe) executable file

a (or .lib) statically linked library
[collection of .o files]

SO (or .d1l1l or .dylib) | dynamically linked library

['shared object’]
51

	overall themes
	briefly, building
	briefly, virtual memory
	interrupts
	kernel mode / permissions

	networking
	layered design
	addresses and names
	secure communication

	caching
	instruction-level parallelism
	C review
	waitlists
	labs
	homeworks
	testing feedback
	warmup assignment

	quizzes
	readings
	sync note
	final
	dev environment
	getting help
	collaboration
	feedback
	late policy
	attendance/etc.
	files in building C programs

