
CSO2 (CS3130)

1

changelog [since lecture]
C exericse (2): correct return type of mystery to void

warmup: correct due date for this semester

waitlist: adjust to reflect lecture waitlist being current constraint

2

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

3

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

4

make
$./foo.exe
...
...
$ edit readline.c
$ make
clang -g -O -Wall -c readline.c -o readline.o
ar rcs terminal.o readline.o libreadline.a
clang -o foo.exe foo.o foo-utility.o -L. -lreadline
$

5

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

6

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

7

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

8

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

8

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

9

keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

10

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

11

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

11

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

11

multiple cores+threads
firefox graphics ssh

clang firefox networking clang

core 1:

core 2:

multiple cores? each core still divided up

12

multiple cores+threads
firefox graphics ssh

clang firefox networking clang

core 1:

core 2:

one program with multiple threads

12

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

13

permissions
$ ls /u/other/secret
ls: cannot open directory '/u/other/secret': Permission denied
$ shutdown
shutdown: Permission denied

14

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

15

layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

16

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

17

secure communication?
how do you know who your socket is to?

who can read what’s on the socket?

what can you do to restrict this?

18

themes
automating building software

libraries, taking advantage of incremental compilation

sharing machines
multiple users/programs on one system

parallelism and concurrency
doing two+ things at once

under the hood of sockets
layered design of networks
implementing secure communication

under the hood of fast processors
caching, (hidden) parallelism, avoiding idle time

19

2004 CPU

Registers
L1 cache

L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 20

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 20

2004 CPU
Registers

L1 cache

L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 20

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 20

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 20

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 20

2004 CPU
Registers

L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 20

some performance examples
example1:

movq $10000000000, %rax
loop1:

addq %rbx, %rcx
decq %rax
jge loop1
ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movq $10000000000, %rax

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2
ret

about 40B instructions
my desktop: approx 2.65 sec

21

some performance examples
example1:

movq $10000000000, %rax
loop1:

addq %rbx, %rcx
decq %rax
jge loop1
ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movq $10000000000, %rax

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2
ret

about 40B instructions
my desktop: approx 2.65 sec

21

C exercise
int array[4] = {10,20,30,40};
int *p;
p = &array[0];
p += 2;
p[1] += 1;

array =
A. compile or runtime error B. {10,20,30,41}
C. {10,20,32,41} D. {10,21,30,40}
E. {12,21,30,40} F. none of these

22

C exercise (2)
int *array2[4]; int array1[4] = {10,20,30,40};
void mystery(int **p) {

*p = &array1[2];
}
int main() {

int **q;
q = array2;
mystery(q);
array1[1] = *q;
...

}

array1 =
A. compile or runtime error B. {10,10,30,40}
C. {10,30,30,40} D. {10,10,20,30}
E. {10,20,10,20} F. none of these

23

some avenues for review
review CSO1 stuff

labs 9–12 (of last Fall)
https://researcher111.github.io/uva-cso1-F23-DG/

exercises we’ve used in the past:
implement strsep library function
implement conversion from dynamic array to linked list

24

https://researcher111.github.io/uva-cso1-F23-DG/

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile errorptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr = ???

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile errorptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr = ???

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile error

ptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr = ???

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile error

ptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr: 0x28

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile error

ptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr: 0x28

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;
ptr = &single;

*ptr = 0xAB; compile errorptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;

ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0xFF
ptr: 0x28

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile errorptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;

ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr: 0x2C

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile errorptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;

ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr: 0x2C

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;
ptr = &array[0];

*ptr = 0xAB; compile errorptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0xFF
array[1]: 0x45
array[0]: 0x12
single: 0x78
ptr: 0x2C

25

some pointer stuff
0x040

0x038

0x030

0x028

0x020

0x018

0x010

0x008

0x000

int array[3]={0x12,0x45,0x67};
int single = 0x78;
int *ptr;

*ptr = 0xAB; compile errorptr = &single;
ptr = (int*) 0x28; addr. of single

ptr = 0x28; compile error

ptr = (int*) single;

pointer to unknown place

*ptr = 0xFF;ptr = array;
ptr = &array[0];
ptr = (int*) 0x2C;

ptr = array[0]; compile error

ptr = (int*) array[0];
pointer to unknown place

ptr[2] = 0xFF;
*(ptr + 2) = 0xFF;

int *temp1; temp1 = ptr + 2;
*temp1 = 0xFF;

int *temp2; temp2 = &ptr[2];
*temp2 = 0xFF;

void change_arg(int *x) {
*x = compute_some_value();

}
…
change_arg(&single);

array[2]: 0x67
array[1]: 0x45
array[0]: 0x12

single: …
ptr: 0x2C

25

waitlists
2p, 3:30p heavily limited by room capacity!

if you are on that waitlist, suggest changing to 5p/6:30p

(changed after lecture:)

will increase course capacity soon
as of Thursday lecture, limited by lecture capacity

make sure you don’t have non-capacity restriction
e.g. credit hour limit, time conflict

26

labs
attend lab in person and get checked off by TA, or

(most labs) submit something to submission site and we’ll grade it
submit to submission site? don’t care if you attend the lab
more strict about submissions without checkoffs
in-person lab checkoff of incomplete lab at least 50% credit

some labs will basically require attendance
or contact me for other arrangements if you can’t (sick, etc.)
logistically won’t work otherwise — e.g. code review

if can’t make lab in-person (example: sick)
let me know, can arrange late/alternate checkoff

27

lab collaboration and submissions
please collaborate on labs!

when working with others on lab and submitting code files

please indicate who you worked with in those files
via comment or similar

28

lab space
if labs are full, might kick out students from ‘wrong’ lab section

29

homeworks
several homework assignments

done individually

generally due on Fridays

(tentative dates on schedule)

30

homework/lab automatic testing
some homeworks/labs have automatic testing
with some delay after you submit

usually 10s of minutes
depending on assignment, number of submissions in queue
if you submit very early, testing program might not be setup yet

when testing program doesn’t understand/can’t test something,
left for manual grading (“not yet graded”)
intention is that testing results are not surprises
if you did some manual testing (no hidden requirements, etc.)
if you think testing program made a mistake,
please submit regrade request 31

warmup assignment
first homework

due Friday 2 Feb

write C function to split a string into array of strings
with dynamic memory allocation

write C program to call function using input/command-line
arguments

write Makefile for it (next topic, next week’s lab)

32

quizzes
released evening after Thursday lecture

starting next week

due 15 minutes before lecture on Tuesdays

about lecture and/or lab from the prior week

5–6ish questions

individual, open book, open notes, open Internet

33

quizzes and work/comments
quizzes will have place for comments/work

will be used to do grading
delay: about 1 week after quiz is due

please use so we can give partial credit

if you find possible error in quiz question
please make your best guess about was meant
and explain what you did in the comemnts

34

on help on quiz questions
I and the TAs won’t answer quiz questions…

but we will answer questions about the lecture material, etc.

(and TAs (not you) are responsible for knowing
what they can’t answer
but we’d prefer you don’t try to test those limits)

35

going over past quizzes
have in past gone over quiz Qs in lecture

either when a lot missed it or
on request in lecture

also fine office hour/Piazza question

36

readings
in lieu of textbook, have readings

mostly written by Prof Tychnoveich (now at UIUC) with edits by
me

on website; should be indicated with corresponding lecture

readings often link to alternative/supplemental readings on topic

37

lecture + assignment sync
generally:
quiz after lecture and/or lab coverage
labs after lecture coverage
homework after lab coverage

means homework (and sometimes quiz)
may be relatively delayed from lecture coverage

38

exams
1 final exam

likely in-person
see official exam schedule

no midterms — instead:
quizzes count a lot

39

development enviroment
we will test via something like SSH into portal

officially supported environment

no restrictions re: IDEs
but make sure you test/know how to run from command line

many students had success with VSCode + its SSH support

40

some notes on VSCode
I don’t use VSCode (I use vim via SSH+tmux…)

but many of our TAs do; their advice:…

use SSH support to run on portal (dept machine)
tutorial in last semester’s CS 2130 lab (linked off main course website)

install Microsoft’s C/C++ extension
set C standard in settings as ‘gnu17’ or similar

install Microsoft’s Makefile Tools extension

41

getting help
office hours — calendar will be posted on website

mix of in-person and remote, indicated on calendar
remote OH will use Discord + online queue
in-person OH may or may not — indicated on whiteboard, probably

Piazza
use private questions if homework code, etc.

emailing me (preferably with ‘3130’ in subject)

42

collaboration (1)
labs — you can/should work with other students

everyone should understand the work submitted
we may ask questions/etc. to check on occassion

homeworks — individual
write your own code / do not share your code
can ask/look up conceptual questions of others
others includes other students, Q&A sites, code generation tools, etc.
cite any sources you use (comments in code)

43

collaboration (2)
quizzes — individual

but open book+notes+etc.

can/should have help reviewing lecture/readings/etc.
legitimate questions for office hours

don’t ask other students, stack overflow, gen AI tools, etc. the
quiz questions

don’t try to find exactly the quiz question on stack overflow

44

feedback
anonymous feedback on Canvas

would appreciate feedback (esp. when I can do something)

(but not a good way to ask for regrades, etc.)

45

late policy
no late quizzes

one quiz dropped (unconditionally)

90% credit for 0–72 hours late homeworks

for labs that allow submission only
lab submission due time is 11:59am the next day
90% credit for 0–24 hours late

no late lab checkoffs except by special arrangement

46

excused lateness
special circumstances?

illness, emergency, etc.

contact me, we’ll figure something out

please don’t attend lab/etc. sick!

47

attendance
I won’t take attendance in lecture

I will attempt to have lecture recordings
sometimes there may be issues with the recording

48

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

49

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

49

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o./program ...

49

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o

./program ...

49

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o

./program ...

49

files in building C programs [static linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(compiler files) libc.a

50

file extensions
name
.c C source code
.h C header file
.s (or .asm) assembly file
.o (or .obj) object file (binary of assembly)
(none) (or .exe) executable file
.a (or .lib) statically linked library

[collection of .o files]
.so (or .dll or .dylib) dynamically linked library

[‘shared object’]
51

	overall themes
	briefly, building
	briefly, virtual memory
	interrupts
	kernel mode / permissions

	networking
	layered design
	addresses and names
	secure communication

	caching
	instruction-level parallelism
	C review
	waitlists
	labs
	homeworks
	testing feedback
	warmup assignment

	quizzes
	readings
	sync note
	final
	dev environment
	getting help
	collaboration
	feedback
	late policy
	attendance/etc.
	files in building C programs

