
building / make

1

last time
topics / logistics
C and pointers

pointer + number:
advance by number × sizeof(*pointer)

pointer[number]:
*(pointer + number); treat pointer as beginning of array

* follows “one arrow”
no implicitly following pointer/taking address

function arguments copied, even if pointers
func(pointer) pattern in place of return

2

note on C exercise
hilited compile/runtime error

for: int_array[1] = *pointer_to_pointer_to_int;

in GCC/clang: ‘just’ warning by default

does conversion from address to integer

means int_array[1] gets ‘junk’ value

I usually compile with this set as error, not warning

3

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

4

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o./program ...

4

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o./program ...

4

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c

clang -o program main.o extra.o

./program ...

4

files in building C programs [dynamic linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(system files)

libc.soloads at runtime

clang -c main.c
clang -c extra.c

main.s extra.s

clang -S -c main.c
clang -S -c extra.c
clang -o program main.o extra.o

./program ...

4

files in building C programs [static linking]
main.c main.h extra.h stdio.h extra.c

main.o extra.o

program
executable

(compiler files) libc.a

5

file extensions
name
.c C source code
.h C header file
.s (or .asm) assembly file
.o (or .obj) object file (binary of assembly)
(none) (or .exe) executable file
.a (or .lib) statically linked library

[collection of .o files]
.so (or .dll or .dylib) dynamically linked library

[‘shared object’]
6

static libraries
Unix-like static libraries: libfoo.a

internally: archive of .o files with index

create: ar rcs libfoo.a file1.o file2.o …

use: cc … -o program -L/path/to/lib … -lfoo
no space between -l and library name
cc could be clang, gcc, clang++, g++, etc.
-L/path/to/lib not needed if in standard location

7

shared libraries
Linux shared libraries: libfoo.so

create:
compile .o files with -fPIC (position independent code)
then: cc -shared … -o libfoo.so

use: cc …-o program -L/path/to/lib …-lfoo

8

finding shared libraries (1)
$ ls
libexample.so main.c
$ clang -o main main.c -lexample
/usr/bin/ld: cannot find -lexample
clang: error: linker command failed with exit code 1 (use -v to see invocation)
$ clang -o main main.c -L. -lexample
$./main
./main: error while loading shared libraries:

libexample.so: cannot open shared object file: No such file or directory

$ LD_LIBRARY_PATH=. ./main
or
$ export LD_LIBRARY_PATH=.
$./main
or
$ clang -o main main.c -L. -lexample -Wl,-rpath .
$./main

9

finding shared libraries (1)
$ ls
libexample.so main.c
$ clang -o main main.c -lexample
/usr/bin/ld: cannot find -lexample
clang: error: linker command failed with exit code 1 (use -v to see invocation)
$ clang -o main main.c -L. -lexample
$./main
./main: error while loading shared libraries:

libexample.so: cannot open shared object file: No such file or directory
$ LD_LIBRARY_PATH=. ./main
or
$ export LD_LIBRARY_PATH=.
$./main
or
$ clang -o main main.c -L. -lexample -Wl,-rpath .
$./main 9

finding shared libraries (1)
cc …-o program -L/path/to/lib …-lfoo

on Linux: /path/to/lib only used to create program
program contains libfoo.so without full path

Linux default: libfoo.so expected to be in /usr/lib, /lib, and
other ‘standard’ locations

possible overrides:
LD_LIBRARY_PATH environment variable
paths specified with -Wl,-rpath=/path/to/lib when creating
executable

10

exercise (incremental compilation)
program built from main.c + extra.c

main.c, extra.c both include extra.h, stdio.h

clang -c main.c # command 1
clang -c extra.c # command 2
clang -o program main.o extra.o # command 3

What commands need to be rerun if…

Question A: …main.c changes?

Question B: …extra.h changes?

11

make
make — Unix program for “making” things…

…by running commands based on what’s changed

what commands? based on rules in makefile

12

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

13

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

13

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

13

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

13

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

13

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date

13

make rules
main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

before colon: target(s) (file(s) generated/updated)

after colon: prerequisite(s)

following lines prefixed by a tab character: command(s) to run

make runs commands if any prereq modified date after target

…after making sure prerequisites up to date
13

make rule chains
program: main.o extra.o
▶ clang -Wall -o program main.o extra.o

extra.o: extra.c extra.h
▶ clang -Wall -c extra.c

main.o: main.c main.h extra.h
▶ clang -Wall -c main.c

to make program, first…

update main.o and extra.o if they aren’t

14

running make
“make target”

look in Makefile in current directory for rules
check if target is up-to-date
if not, rebuild it (and dependencies, if needed) so it is

“make target1 target2”
check if both target1 and target2 are up-to-date
if not, rebuild it as needed so they are

“make”
if “firstTarget” is the first rule in Makefile,
same as ‘make firstTarget”

15

exercise: what will run?
W: X Y
▶ buildW
X: Q
▶ buildX
Y: X Z
▶ buildY

W modified 1 minute ago
X modified 3 hours ago
Y does not exist
Z modified 1 hour ago
Q modified 2 hours ago

exercise: “make W” will run what commands?

A. none B. buildY only C. buildW then buildY
D. buildY then buildW E. buildX then buildY then buildW
F. buildX then buildW G. something else

16

explanation
W (1 min old)

X (3 h old) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
18

explanation
W (1 min old)

X (3 h old) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
18

explanation
W (1 min old)

X (3 h old) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
18

explanation
W (1 min old)

X (just updated) Y (not existant)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
18

explanation
W (1 min old)

X (just updated) Y (just updated)

Q (2 h old) Z (3 h old)
first: to make W, need X, Y up to date

to make X up to date:
need Q up to date X
then build X if less recent than Q (yes) X
to make Y up to date: need X up to date X
need Z up to date X
then build Y if less recent than X (yes) or Z (yes) X

then build W if less recent than X (yes, now) or Y (yes) X
18

‘phony’ targets (1)
common to have Makefile targets that aren’t files
all: program1 program2 libfoo.a
“make all” effectively shorthand for “make program1
program2 libfoo.a”

no actual file called “all”

19

‘phony’ targets (2)
sometimes want targets that don’t actually build file

example: “make clean” to remove generated files
clean:
▶ rm --force main.o extra.o

20

but what if I create…
clean:
▶ rm --force main.o extra.o

all: program1 program2 libfoo.a
Q: if I make a file called “all” and then “make all” what happens?

Q: same with “clean” and “make clean”?

21

marking phony targets
clean:
▶ rm --force main.o extra.o

all: program1 program2 libfoo.a

.PHONY: all clean
special .PHONY rule says “ ‘all’ and ‘clean’ not real files”

(not required by POSIX, but in every make version I know)

22

conventional targets
common convention:
target name purpose
(default), all build everything
install install to standard location
test run tests
clean remove generated files

23

redundancy (1)
program: main.o extra.o
▶ clang -Wall -o program main.o extra.o

extra.o: extra.c extra.h
▶ clang -Wall -o extra.o -c extra.c
main.o: main.c main.h extra.h

▶ clang -o main.o -c main.c
what if I want to run clang with -fsanitize=address
instead of -Wall?

what if I want to change clangto gcc?
24

variables/macros (1)
CC = gcc
CFLAGS = -Wall -pedantic -std=c11 -fsanitize=address
LDFLAGS = -Wall -pedantic -fsanitize=address
LDLIBS = -lm

program: main.o extra.o
▶ $(CC) $(LDFLAGS) -o program main.o extra.o $(LDLIBS)

extra.o: extra.c extra.h
▶ $(CC) $(CFLAGS) -o extra.o -c extra.c

main.o: main.c main.h extra.h
▶ $(CC) $(CFLAGS) -o main.o -c main.c

25

aside: conventional names
chose names CC, CFLAGS, LDFALGS, etc.

not required, but conventional names (incomplete list follows)
CC C compiler
CFLAGS C compiler options
LDFLAGS linking options
LIBS or LDLIBS libraries

26

variables/macros (2)
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall
LDLIBS = -lm

program: main.o extra.o
▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

extra.o: extra.c extra.h
▶ $(CC) $(CFLAGS) -o $@ -c $<

main.o: main.c main.h extra.h
▶ $(CC) $(CFLAGS) -o $@ -c $<

aside: $^ works on GNU make (usual on Linux), but not portable.
27

aside: make versions
multiple implementations of make

for stuff we’ve talked about so far, no differences

most common on Linux: GNU make

will talk about ‘pattern rules’, which aren’t supported by some
other make versions

older, portable, (in my opinion less intuitive) alternative: suffix rules

28

pattern rules
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall
LDLIBS = -lm

program: main.o extra.o
▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

%.o: %.c
▶ $(CC) $(CFLAGS) -o $@ -c $<

extra.o: extra.c extra.h
main.o: main.c main.h extra.h

aside: these rules work on GNU make (usual on Linux), but less portable than suffix
rules.

29

built-in rules
‘make’ has the ‘make .o from .c’ rule built-in already, so:
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall
LDLIBS = -lm

program: main.o extra.o
▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

extra.o: extra.c extra.h
main.o: main.c main.h extra.h
(don’t actually need to write supplied rule!)

note: built-in rules not allowed on next week’s lab

30

built-in rules
‘make’ has the ‘make .o from .c’ rule built-in already, so:
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall
LDLIBS = -lm

program: main.o extra.o
▶ $(CC) $(LDFLAGS) -o $@ $^ $(LDLIBS)

extra.o: extra.c extra.h
main.o: main.c main.h extra.h
(don’t actually need to write supplied rule!)

note: built-in rules not allowed on next week’s lab

30

writing Makefiles?
error-prone to automatically all .h dependencies

-MM option to gcc or clang
outputs Make rule
ways of having make run this

Makefile generators
other programs that write Makefiles

31

other build systems
alternatives to writing Makefiles:

other make-ish build systems
ninja, scons, bazel, maven, xcodebuild, msbuild, …

tools that generate inputs for make-ish build systems
cmake, autotools, qmake, …

32

backup slides

33

suffix rules
CC = gcc
CFLAGS = -Wall
LDFLAGS = -Wall

program: main.o extra.o
▶ $(CC) $(LDFLAGS) -o $@ $^

.c.o:
▶ $(CC) $(CFLAGS) -o $@ -c $<

extra.o: extra.c extra.h
main.o: main.c main.h extra.h
.SUFFIXES: .c .o

aside: $^ works on GNU make (usual on Linux), but not portable.
34

backup slides

35

	files in building C programs
	libraries, static and shared
	exercise: commands to build

	make
	basics
	exercise: what will be run
	phony targets
	conventional targets
	variables, macro rules
	aside: make versions
	pattern rules
	built-in rules

	other build system stuff
	backup slides
	suffix rules

	backup slides

