
1

Changelog (all changes after lecture)
25 Jan 2024: permissions encoding, chmod—exact permissions:
indicate that 451 gives other execute permissions
25 Jan 2024: authorization checking on Unix: adjust slide to
explain what system call is briefly
25 Jan 2024: superuser: ‘system calls’ to ‘OS functionality’ since
we haven’t really explained system calls yet
25 Jan 2024: superuser v kernel-mode: add brief preview of kernel
mode to slide
25 Jan 2024: move exercise re: where permissions are checked to
next week’s slides

2

last time
libraries

static = become part of executable (archive of .o files)
dynamic = loaded when executable starts

make rules
target: prereqs (= dependencies)
(tab)commands

make checking prereqs + comparing modification times
recursively (prereqs of prereqs, etc.)
decides if and in what order to run commands

avoiding redundancy in makefiles
variables/macros
pattern rules (e.g. %.o: %.c)
built-in rules 3

libraries and command line
when linking against libraries use:
clang -o executable foo.o bar.o -lName
rather than
clang -o executable -lName foo.o bar.o

by default, linker processes files in order

might only grab things that previous files needed from library
(especially for static libraries)

4

quiz
released Thursday evening
due 15 minutes before lecture Tuesday
mostly autograded, but…
we will read comments/work and adjust automatic scores

use comments/work if you think info is missing/error in quiz
we will generally not be able to give clarifications

box around answer = green; should be recorded
submitted when you click out of text box or press button
stays yellow/red = no it’s not (example: NetBadge/wifi problem)

no time limit / does not need to be taken in one sitting
can go reopen and revise up to due time 5

quiz demo

6

writing Makefiles?
error-prone to automatically all .h dependencies

-MM (and related) options to gcc or clang
outputs make rule
ways of having make run this + use output

Makefile generators
other programs that write Makefiles

7

other build systems
alternatives to writing Makefiles:

other make-ish build systems
ninja, scons, bazel, maven, xcodebuild, msbuild, …

tools that generate inputs for make-ish build systems
cmake, autotools, qmake, …

8

opening a file?
open("/u/creiss/private.txt", O_RDONLY)

say, private file on portal

on Linux: makes system call

kernel needs to decide if this should work or not

9

how does OS decide this?
argument: needs extra metadata

what would be wrong using…

system call arguments?

where the code calling open came from?

10

user IDs
most common way OSes identify “who” process belongs to:

process = instance of running program (w/ own registers+memory)
(we’ll be more specific about processes later)

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

11

user IDs
most common way OSes identify “who” process belongs to:

process = instance of running program (w/ own registers+memory)
(we’ll be more specific about processes later)

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

11

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number
core part of OS only knows number (not name!)

core, always loaded part of OS = “kernel”
the part of the OS with extra privs with hardware
the part of the OS that enforces program restrictions

effective user ID is used for all permission checks
also some other user IDs

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

12

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number
core part of OS only knows number (not name!)

core, always loaded part of OS = “kernel”
the part of the OS with extra privs with hardware
the part of the OS that enforces program restrictions

effective user ID is used for all permission checks
also some other user IDs

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines 12

POSIX groups
gid_t getegid(void);

// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel (= core part of OS) only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

13

id
cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

14

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

15

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

15

POSIX file permissions
POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

on directories, ‘execute’ means ‘search’ instead

16

permissions encoding
permissions encoded as 9-bit number, can write as octal: XYZ

octal divides into three 3-bit parts:
user permissions (X), group permissions (Y), other permission (Z)

each 3-bit part has a bit for ‘read’ (4), ‘write’ (2), ‘execute’ (1)

700 — user read+write+execute; group none; other none

451 — user read; group read+execute; other execute

17

chmod — exact permissions
chmod 700 file
chmod u=rwx,og= file
user read write execute; group/others no accesss
chmod 451 file
chmod u=r,g=rx,o=x file
user read; group read/execute; others no execute

18

chmod — adjusting permissions
chmod u+rx foo
add user read and execute permissions
leave other settings unchanged
chmod o-rwx,u=rx foo
remove other read/write/execute permissions
set user permissions to read/execute
leave group settings unchanged

19

POSIX/NTFS ACLs
more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

20

POSIX ACL syntax
group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions
user:tj1a:−−−

POSIX acl rule:
user take precedence over group entries

21

POSIX ACLs on command line
getfacl file
setfacl -m 'user:tj1a:---' file
add line to ACL
setfacl -x 'user:tj1a' file
REMOVE line from acl
setfacl -M acl.txt file
add to acl, but read what to add from a file
setfacl -X acl.txt file
remove from acl, but read what to remove from a file

22

authorization checking on Unix
request made to core part of OS = system call

handler for system calls checks permissions
no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

23

superuser
user ID 0 is special

superuser or root
(non-Unix) or Administrator or SYSTEM or …

some OS funtionality: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

24

superuser v kernel mode
processor has two modes

kernel mode (what core part of OS uses)
user mode (every thing else)

programs running as superuser still in user mode
just change in how OS acts when program asks for things

superuser : OS :: kernel mode : hardware

25

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
26

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
27

Unix password storage
typical single-user system: /etc/shadow

only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

28

aside: beyond passwords
/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

29

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell
30

changing user IDs
int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

31

sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

32

set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID
“extra” user IDs track what original user was

sudo program: owned by root, marked set-user-ID
sudo’s code: if (original user allowed) ...; else print error

marking setuid: chmod u+s

33

uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

34

set-user ID programs are very hard to write
what if stdin, stdout, stderr start closed?

what if signals setup weirldy?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

35

privilege escalation
privilege escalation — vulnerabilities that allow more privileges

code execution/corruption in utilities that run with high privilege
e.g. buffer overflow, command injection

login, sudo, system services, …
bugs in system call implementations

logic errors in checking delegated operations

36

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

37

backup slides

38

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

39

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

39

authentication
password

hardware token

…

40

some security tasks (1)
helping students collaborate in ad-hoc small groups on shared
server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

41

some security tasks (2)
letting students assignment files to faculty on shared server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

42

some security tasks (3)
running untrusted game program from Internet?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

43

set-user ID gates
set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel
way to allow normal users to do one thing that needs privileges

write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

44

set-user-ID program v syscalls
hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

45

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

46

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt
46

a very broken setuid program
print_grade.c:
int main(int argc, char **argv) {

char filename[500];
sprintf(filename, "all-grades/%s/%s.txt",

argv[1], getenv("USER"));
int fd = open(filename, O_RDWR);
char buffer[1024];
read(fd, buffer, 1024);
printf("%s: %s\n", argv[1], buffer);

}

HUGE amount of stuff can go wrong

examples?
47

other privileged escalation issues
sudo problem: trusted code that’s supposed to enforce restriction
can be fooled into not really enforcing it
also can occur in other contexts:

system call letting program access things it shouldn’t?
browser letting web page javascript access things it shouldn’t?
web application giving users access to files they shouldn’t have?
mobile phone OS allowing location access without location
permission?
… 48

another very broken setuid program (setup)
allow users to print files, but only if less than 1KB

49

another very broken setuid program
print_short_file.c:

int main(int argc, char **argv) {
struct stat st;
if (stat(argv[1], &st) == −1) abort();
// make sure argv[1] is owned by user running this
if (st.st_uid != getuid()) abort();
// and that it's less than 1 KB
if (st.st_size >= 1024) abort();
char command[1024];
sprintf(command, "print %1000s", argv[1]);
system(command);
return EXIT_SUCCESS;

}
50

a delegation problem
consider printing program marked setuid to access printer

decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

51

a broken solution
if (original user can read file from argument) {

open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

52

a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

link: create new directory entry for file
another option: rename, symlink (“symbolic link” — alias for
file/directory)
another possibility: run a program that creates secret file
(e.g. temporary file used by password-changing program)

time-to-check-to-time-of-use vulnerability 53

TOCTTOU solution
temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

54

practical TOCTTOU races?
can use symlinks maze to make check slower

symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

lots of time spent following symbolic links when program opening
toprint.txt

gives more time to sneak in unlink/link or (more likely) rename

55

exercise
which (if any) of the following would fix for a TOCTTOU
vulnerability in our setuid printing application? (assume the
Unix-permissions without ACLs are in use)

[A] both before and after opening the path passed in for reading,
check that the path is accessible to the user who ran our
application
[B] after opening the path passed in for reading, using fstat with
the file descriptor opened to check the permissions on the file
[C] before opening the path, verify that the user controls the file
referred to by the path and the directory containing it

56

	command line order for libraries
	quiz
	other build system stuff
	accounts
	user ID idea
	group IDs

	permissions and access control lists
	file permissions

	enforcing permissions
	superuser
	becoming superuser
	on boot, /bin/login
	set-user-ID/sudo
	a litany of silly setuid program issues

	privilege escalation
	some malicious things we'd like to stop
	authentication v authorization
	exercises on the POSIX model
	setuid ``gates''
	buggy set-user-ID program 1
	other privilege escalation contexts
	buggy set-user-ID program 2
	TOCTTOU example
	exercise

