
1

last time
preview: OS enforces restrictions
user/group IDs
access control list idea

list of who can access what

chmod rwx for owner/one group/everyone else
more general access control lists
superuser/root = always has permission

but still goes through OS to do things

set-user-ID: controlled access to special functionality
mark specific programs to have extra access

2

reminder: warmup

3

Q1
problem: existing executable breaks when .so file updated

if .a instead of .so:
executable includes machine code from old version of library
because linking process includes .a file

bar.h has both prototypes
would not compile+link
in C (but not C++) — can’t have two prototypes for one function
(in C++ — would need to define both versions of function)

4

Q2: erroneous makefile (1)
all: executable

foo.c (should be foo.o): foo.h
gcc -Wall -c foo.c

main.c (should be main.o): foo.h
gcc -Wall -c main.c

executable: foo.c main.c (should be foo.o main.o)
gcc -Wall -o executable foo.c main.c (should be foo.o main.o)

clean:
rm --force main.o foo.o executable

5

Q2: erroneous makefile (2)
all

executable
(but built from main.c+foo.c

without using .o files)

main.c
(but builds main.o)

foo.c
(but builds foo.o)

foo.h

if foo.h more recent than main.c, foo.c:
builds main.o from main.c

(compiles main.c once)
builds foo.o from foo.c (A)
executable need not be updated

(if main.c/foo.c old) (C)

if foo.c or main.c more recent than executable:
builds executable from foo.c, main.c

(compile main.c once)

if both true: main.c compiled twice (B)
6

Q2: erroneous makefile (2)
all

executable
(but built from main.c+foo.c

without using .o files)

main.c
(but builds main.o)

foo.c
(but builds foo.o)

foo.h

if foo.h more recent than main.c, foo.c:
builds main.o from main.c

(compiles main.c once)
builds foo.o from foo.c (A)
executable need not be updated

(if main.c/foo.c old) (C)

if foo.c or main.c more recent than executable:
builds executable from foo.c, main.c

(compile main.c once)

if both true: main.c compiled twice (B)
6

Q2: erroneous makefile (2)
all

executable
(but built from main.c+foo.c

without using .o files)

main.c
(but builds main.o)

foo.c
(but builds foo.o)

foo.h

if foo.h more recent than main.c, foo.c:
builds main.o from main.c

(compiles main.c once)
builds foo.o from foo.c (A)
executable need not be updated

(if main.c/foo.c old) (C)

if foo.c or main.c more recent than executable:
builds executable from foo.c, main.c

(compile main.c once)

if both true: main.c compiled twice (B)
6

Q2: erroneous makefile (2)
all

executable
(but built from main.c+foo.c

without using .o files)

main.c
(but builds main.o)

foo.c
(but builds foo.o)

foo.h

if foo.h more recent than main.c, foo.c:
builds main.o from main.c

(compiles main.c once)
builds foo.o from foo.c (A)
executable need not be updated

(if main.c/foo.c old) (C)

if foo.c or main.c more recent than executable:
builds executable from foo.c, main.c

(compile main.c once)

if both true: main.c compiled twice (B)
6

Q3
logo.h: logo.bmp

xxd reads logo.bmp — is prerequisite

xxd writes logo.h — is target

7

Q4
main.o: logo.h graphics.h

don’t need command because it’s in %.o: %.c rule (but not
error)

don’t need main.c because it’s in %.o: %.c rule (but not error)

do need logo.h, graphics.h

shouldn’t have stdio.h since it’s not in this directory
could have /usr/include/stdio.h or similar

8

Q6
want two files:

one r/w for A, B only
one r/w for A, C only

group with A:
owned by B, user rw, group-with-A rw, other no access
owner by C, user rw, group-with-A rw, other no access

group with B + group with C:
owned by A, user rw, group-with-B rw, other no access
owner by A, user rw, group-with-C rw, other no access

9

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

10

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

11

privileged operation: problem
how can hardware (HW) plus operating system (OS) allow:

read your own files from hard drive

but disallow:
read others files from hard drive

12

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

13

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

13

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

13

kernel mode
extra one-bit register: “are we in kernel mode”

other names: privileged mode, supervisor mode, …

not in kernel mode = user mode

certain operations only allowed in kernel mode
privileged instructions

example: talking to any I/O device

14

what runs in kernel mode?
system boots in kernel mode

OS switches to user mode to run program code

next topic: when does system switch back to kernel mode?
how does OS tell HW where the (trusted) OS code is?

15

hardware + system call interface
applications + libraries

system call interface
kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

16

calling the OS?

OS code

program code

void readFromDiskInto(int diskLocation, char *dest) {
...
runPrivilegedInstruction(...);
...

}

void readFileSafely(const char *name, char *dest) {
if (canCurrentProgramCanAccessFile(name)) {

readFromDiskInto(lookupFile(name), dest)
}

}

how do we let this code run
readFromSafely in kernel mode
but not readFromDisk?

17

controlled entry to kernel mode (1)
special instruction: “make system call”

similar idea as call instruction — jump to function elsewhere
(and allow that function to return later)

runs OS code in kernel mode at location specified earlier

OS sets up at boot

location can’t be changed without privilieged instrution

18

controlled entry to kernel mode (2)
OS needs to make specified location:

figure out what operation the program wants
calling convention, similar to function arguments + return value

be “safe” — not allow the program to do ‘bad’ things
example: checks whether current program is allowed to read file before
reading it
requires exceptional care — program can try weird things

19

system call process
user mode kernel mode

program encodes
request for OS in regs

program runs special instruction
“system call”

start system call handler

read registers
to find out what
program wants
and maybe do it

20

system call process
user mode kernel mode

program encodes
request for OS in regs

program runs special instruction
“system call”

start system call handler

read registers
to find out what
program wants
and maybe do it

20

system call terminology
some inconsistency:

system call = event of entering kernel mode on request?

system call = whole porcess from beginning to end?

same issue as with ‘function call’
is it just starting the function, or the whole time the function runs?

21

keeping permissions?
which of the following would still be secure?

A. performing authorization checks in the standard library in
addition to system call handlers

B. performing authorization checks in the standard library instead
of system call handlers

C. making the user ID a system call argument rather than storing it
persistently in the OS’s memory

22

Linux x86-64 system calls
special instruction: syscall

runs OS specified code in kernel mode

23

Linux syscall calling convention
before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
24

Linux x86-64 hello world
.globl _start
.data
hello_str: .asciz "Hello, World!\n"
.text
_start:

movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

25

approx. system call handler
sys_call_table:

.quad handle_read_syscall

.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception 26

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files

socket, accept, getpeername — socket-related

27

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files

socket, accept, getpeername — socket-related

27

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “read keypress”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

maybe need to wait
for keypress to read

so do something else for a while

28

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “read keypress”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

maybe need to wait
for keypress to read

so do something else for a while

28

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “exit program”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

maybe need to wait
for keypress to read

so do something else for a while

28

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “exit program”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

maybe need to wait
for keypress to read

so do something else for a while

28

system call wrappers
library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

29

system call wrappers
library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

29

system call wrapper: usage
/* unistd.h contains definitions of:

O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {

int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error: %s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}
30

system call wrapper: usage
/* unistd.h contains definitions of:

O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {

int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error: %s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}
30

strace hello_world (1)
strace — Linux tool to trace system calls

run on assembly program we saw earlier:
$ strace -o trace.txt ./hello_world
$ cat trace.txt
execve("./hello_world", ["./hello_world"],

0x7ffeedafd0a0 /* 28 vars */) = 0
write(1, "Hello, World!\n\0", 14) = 14
exit(0) = ?
+++ exited with 0 +++

31

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when statically linked:
execve("./hello_world", ["./hello_world"], 0x7ffeb4127f70 /* 28 vars */)

= 0
brk(NULL) = 0x22f8000
brk(0x22f91c0) = 0x22f91c0
arch_prctl(ARCH_SET_FS, 0x22f8880) = 0
uname({sysname="Linux", nodename="reiss-t3620", ...}) = 0
readlink("/proc/self/exe", "/u/cr4bd/spring2023/cs3130/slide"..., 4096)

= 57
brk(0x231a1c0) = 0x231a1c0
brk(0x231b000) = 0x231b000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or

directory)
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++

32

aside: what are those syscalls?
execve: run program
brk: allocate heap space
arch_prctl(ARCH_SET_FS, ...): thread local storage pointer

may make more sense when we cover concurrency/parallelism later

uname: get system information
readlink of /proc/self/exe: get name of this program
access: can we access this file [in this case, a config file]?
fstat: get information about open file
exit_group: variant of exit

33

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when dynamically linked:
execve("./hello_world", ["./hello_world"], 0x7ffcfe91d540 /* 28 vars */)

= 0
brk(NULL) = 0x55d6c351b000
...
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=196684, ...}) = 0
mmap(NULL, 196684, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7a62dd3000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0"..., 832) = 832
...
close(3) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++ 34

backup slides

35

crash timeline timeline

segfault.exe

out of bounds memory acecss

= operating system

36

locating exception handlers (one strategy)

address pointer
base + 0x000
base + 0x008
base + 0x010
base + 0x018… …
base + 0x108… …
base + 0x400… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_system_call:
movq %rax, save_rax
movq %rbx, save_rbx
...

handle_keyboard_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

37

keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

38

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

39

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

39

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

39

interrupt disabling
CPU supports disabling (most) interrupts

interrupts will wait until it is reenabled

CPU has extra state:
are interrupts enabled?
is keyboard interrupt pending?
is timer interrupt pending?

40

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

41

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

41

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

41

disabling interrupts
automatically disabled when exception handler starts

also can be done with privileged instruction:
change_keyboard_parameters:

disable_interrupts
...
/* change things used by

handle_keyboard_interrupt here */
...
enable_interrupts

42

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

43

exception implementation: notes
I describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

44

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

address space (map from program to real addresses)

45

context switch pseudocode
context_switch(last, next):

copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

46

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware interface

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

47

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

47

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

47

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

47

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

47

aside: is the OS the kernel?
OS = stuff that runs in kernel mode?

OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries + utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is

each piece can be replaced separately…

48

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

49

exception implementation: notes
I describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

50

running the exception handler
hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

51

	some malicious things we'd like to stop
	privileged instruction idea
	preview: unix design
	OS code in memory
	exception entry point
	system call idea
	aside: terminology
	exercise: why not check
	system calls on Linux
	maybe not return?
	system call wrappers

	interlude: strace
	backup slides
	crash timeline
	exception table
	key-in timeline
	nested exceptions?

	exception table + dispatch
	in the context
	context switch pseudocode
	Unix design [full]

	exception dispatch

