
1

changelog
3 Feb 2024: The Process: move slide earlier in slide deck

3 Feb 2024: The Process: mention multiple threads idea on slide

3 Feb 2024: context switch: mention saving/restoring address
mapping

3 Feb 2024: shared memory: hide mapping including OS data for
now since we haven’t explaind kernel-mode-only mappings yet

3 Feb 2024: exercise explanation: for A, give examples of library
calls that need no system calls

2

last time
kernel mode versus user mode

one-bit register: track which mode
in kernel mode: full hardware interface
in user mode: limited interface

normal programs run in user mode

request OS do things that require kernel mode
(typically through library functions)

system call: make request of OS
hardware runs OS-specified function in kernel mode
OS function decodes program request (calling convention)

3

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

4

strace hello_world (1)
strace — Linux tool to trace system calls

run on assembly program we saw earlier:
$ strace -o trace.txt ./hello_world
$ cat trace.txt
execve("./hello_world", ["./hello_world"],

0x7ffeedafd0a0 /* 28 vars */) = 0
write(1, "Hello, World!\n\0", 14) = 14
exit(0) = ?
+++ exited with 0 +++

5

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when statically linked:
execve("./hello_world", ["./hello_world"], 0x7ffeb4127f70 /* 28 vars */)

= 0
brk(NULL) = 0x22f8000
brk(0x22f91c0) = 0x22f91c0
arch_prctl(ARCH_SET_FS, 0x22f8880) = 0
uname({sysname="Linux", nodename="reiss-t3620", ...}) = 0
readlink("/proc/self/exe", "/u/cr4bd/spring2023/cs3130/slide"..., 4096)

= 57
brk(0x231a1c0) = 0x231a1c0
brk(0x231b000) = 0x231b000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or

directory)
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++

6

aside: what are those syscalls?
execve: run program
brk: allocate heap space
arch_prctl(ARCH_SET_FS, ...): thread local storage pointer

may make more sense when we cover concurrency/parallelism later

uname: get system information
readlink of /proc/self/exe: get name of this program
access: can we access this file [in this case, a config file]?
fstat: get information about open file
exit_group: variant of exit

7

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when dynamically linked:
execve("./hello_world", ["./hello_world"], 0x7ffcfe91d540 /* 28 vars */)

= 0
brk(NULL) = 0x55d6c351b000
...
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=196684, ...}) = 0
mmap(NULL, 196684, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7a62dd3000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0"..., 832) = 832
...
close(3) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++ 8

aside: system call wrapper versus…
libraries provide system call wrappers

examples on Linux: open(), write(),
just convert function call to system call

other library functions may incidentally make system calls to
implement their functionality

example: printf implemented using write-bytes system call
example: malloc implemented using various memory management
system calls

9

hardware + system call interface
applications + libraries

system call interface
kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

12

hardware + system call + library interface
application

library interface

system libraries
system call interface

kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

13

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

14

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

15

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is …
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

15

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is 42 (always with ‘normal’ multiuser OSes)
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

16

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

17

address space
programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

18

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

19

address space
programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

20

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

21

shared memory
recall: dynamically linked libraries
would be nice not to duplicate code/data…
we can!

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

Shared code or data
OS data

real memory

22

one way to set shared memory on Linux
/* regular file, OR: */
int fd = open("/tmp/somefile.dat", O_RDWR);
/* special in-memory file */
int fd = shm_open("/name", O_RDWR);
...
/* make file's data accessible as memory */
void *memory = mmap(NULL, size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

mmap: “map” a file’s data into your memory

will discuss a bit more when we talk about virtual memory

part of how Linux loads dynamically linked libraries

23

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is 42 (always with ‘normal’ multiuser OSes) result: might crash
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

24

program crashing?
what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

how does hardware do this?

would be complicated to tell about other programs, etc.

instead: hardware runs designated OS routine

25

program crashing?
what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

how does hardware do this?

would be complicated to tell about other programs, etc.

instead: hardware runs designated OS routine

25

exceptions
recall: system calls — software asks OS for help

also cases where hardware asks OS for help

different triggers than system calls

but same mechanism as system calls:
switch to kernel mode (if not already)
call OS-designated function

26

exceptions
recall: system calls — software asks OS for help

also cases where hardware asks OS for help

different triggers than system calls

but same mechanism as system calls:
switch to kernel mode (if not already)
call OS-designated function

26

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

28

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

28

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

28

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

28

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

29

an infinite loop
int main(void) {

while (1) {
/* waste CPU time */

}
}
If I run this on a shared department machine, can you still use it?
…if the machine only has one core?

30

timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

31

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

32

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

33

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

34

exceptions [Venn diagram]

exceptions

system
calls

faults
(example:
segfault)

interrupts
(example: I/O)

35

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

36

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

36

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

36

general exception process
user mode kernel mode

something triggers exception
maybe the program did
or maybe something else

start exception handler

OS handles
whatever happenedgo back to running

program code
possibly a different

program than before
exit exception handler

37

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

38

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

38

switching programs
OS starts running somehow

some sort of exception

saves old registers + program counter + address mapping
(optimization: could omit when program crashing/exiting)

sets new registers + address mapping, jumps to new program
counter

called context switch
saved information called context

39

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

40

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

41

threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

42

threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

42

The Process
process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
(process could have multiple threads — with independent registers)
address space = illusion of own memory

43

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

44

exception patterns with I/O (1)
input — available now:

exception: device says “I have input now”
handler: OS stores input for later
exception (syscall): program says “I want to read input”
handler: OS returns that input

input — not available now:
exception (syscall): program says “I want to read input”
handler: OS runs other things (context switch)
exception: device says “I have input now”
handler: OS retrieves input
handler: (possibly) OS switches back to program that wanted it

45

exception patterns with I/O (2)
output — ready now:

exception (syscall): program says “I want to output this’
handler: OS sends output to deive

output — not ready now
exception (syscall): program says “I want to output”
handler: OS realizes device can’t accept output yet
(other things happen)
exception: device says “I’m ready for output now”
handler: OS sends output requested earlier

46

keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

47

review: definitions
exception: hardware calls OS specified routine

many possible reasons
system calls: type of exception

context switch: OS switches to another thread
by saving old register values + loading new ones
part of OS routine run by exception

48

which of these require exceptions? context
switches?
A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

49

which require exceptions [answers] (1)
A. program calls a function in the standard library

no (same as other functions in program; many standard library functions
make no system calls (and do not otherwise trigger exceptions — for
example strlen, pow; also if we consider the calling of a function just
the call instruction, then the library functions that do make system
calls won’t do so until later)

B. program writes a file to disk
yes (requires kernel mode only operations)

C. program A goes to sleep, letting program B run
yes (kernel mode usually required to change the address space to acess
program B’s memory)

50

which require exceptions [answer] (2)
D. program exits

yes (requires switching to another program, which requires accessing OS
data + other program’s memory)

E. program returns from one function to another function
no

F. program pops a value from the stack
no

51

which require context switches [answer]
no: A. program calls a function in the standard library

no: B. program writes a file to disk
(but might be done if program needs to wait for disk and other things
could be run while it does)

yes: C. program A goes to sleep, letting program B run

yes: D. program exits

no: E. program returns from one function to another function

no: F. program pops a value from the stack

52

terms for exceptions
terms for exceptions aren’t standardized

our readings use one set of terms
interrupts = externally-triggered
faults = error/event in program
trap = intentionally triggered

all these terms appear differently elsewhere

53

backup slides

54

	some malicious things we'd like to stop
	interlude: strace
	kernel + standard library
	memory protection
	exercise: expected behavior?
	address spaces
	preview: shared memory

	extending system calls: exception idea
	reasons for exceptions, generally

	infinite loop
	exception kinds, summarized
	time multiplexing
	exception handling generalized
	operating system runs
	context switches

	thread idea
	process
	not just timers
	typical I/O pattern

	review: exception / context switch
	exercise
	aside: terms

	backup slides

