
signals

1

changelog
8 Feb 2024: kill() is not already immediate: correct argument order
to kill() call

13 Feb 2024: identify that ‘thread/processor next instruction’ is
the program counter on signal v exception slide

2

last time
exceptions = processor runs OS

call handler setup at boot in kernel mode
many causes
system calls (program requests OS help)
program does something unexpected (example: divide by zero)
input/ouptut devices, timer (external event interrupts program)

process = ‘virtual’ machine
thread = processor simulated by sharing real processor over time
address space = memory simulated by mapping program addresses (so
programs cannot interfere with each other)

3

Q1-3 (part 1)
(1-2) compiler waits for read from disk (system call to wait)

I guess you could loop checking if read is done, but that’s pretty
inefficient

(3) simulation runs — probably switched to by handler for system
call in (1)

(4) text editor runs + update screen from keypress
I/O exception causes text editor to run
finishes operation that was started by earlier system call exception
text editor makes system calls for output/requesting input

4

Q1-3 (part 1)
(1-2) compiler waits for read from disk (system call to wait)

I guess you could loop checking if read is done, but that’s pretty
inefficient

(3) simulation runs — probably switched to by handler for system
call in (1)

(4) text editor runs + update screen from keypress
I/O exception causes text editor to run
finishes operation that was started by earlier system call exception
text editor makes system calls for output/requesting input

4

Q1-3 (part 2)
(4) text editor runs + update screen from keypress

I/O exception causes text editor to run
finishes operation that was started by earlier system call exception
text editor triggers system calls for output/requesting input

(5) simulation resumes runnning (part of handling text editor input
system call)
(6) read from disk finishes, run compiler (I/O exception)

part of handling compiler’s system call from (1)

(7) compiler open+write file (probably at least two system calls)
(8) while waiting for write, simulation runs

(part of handling compiler system call)
5

Q1-3 (part 2)
(4) text editor runs + update screen from keypress

I/O exception causes text editor to run
finishes operation that was started by earlier system call exception
text editor triggers system calls for output/requesting input

(5) simulation resumes runnning (part of handling text editor input
system call)
(6) read from disk finishes, run compiler (I/O exception)

part of handling compiler’s system call from (1)

(7) compiler open+write file (probably at least two system calls)
(8) while waiting for write, simulation runs

(part of handling compiler system call)
5

Q1
non-system-call exception handler would complete operation
requested via prior system call exception

for this purpose, most notable that exceptions can come from input
and output devices

probably should avoid using plain ‘system call’:
system call operation ∼ thing requested by program of OS using
exception
system call exception ∼ jumping to the OS handler that will figure out
what program wants in response to special ‘system call’ instruction

6

Q4
first process: 1, yield

second process: A, yield

first process: 2, yield

second process: B, yield

first process: 3, yield

second process: C, yield

7

Q5
print/fflush make system calls?

normal function call to printf/fflush

implementation of printf/fflush triggers system call
special instruction to do this part of library

system call causes code in OS (not library/main()) to run in kernel
mode

8

Q6
x stored in %r15 when first process running

when second process running, its data is in %r15

so first process’s %r15 must be saved somewhere else

will be done by OS

9

anonymous feedback (1)
“I feel like quiz 2 is too difficult, because we were not taught enough about the first part of the quiz. I also feel like
the sequence of events, are vague. We did not learn what exceptions happen after a keypress occurs, and what
exceptions happen in the stages of a keypress. Also in the notes, it just says exceptions, it does not say what type of
exception. is context switching an exception? Also, I don’t like how in question 2, you say not likely, that is so
vague. Also, what is the difference between a system call and a system call exception? isn’t a system call an
exception? After a program ends or completes a process, is there an interrupt. If so, then every context switch has
an interrupt? Is an exception just when its kernel mode? The definitions are vague”

“you should make a list of non sys call exceptions and sys call exceptions and exceptions that lead to context
switches. Also the context between them, like what happens when a keypress occurs in every stage, because this
was not in depth enough during lecture for us to answer the quiz”

10

exception ∼ hardware runs the OS to do something
yes, runs the OS in kernel mode (way to get into kernel mode from user
mode)
lots of reasons this might happen (‘kinds’ of exceptions)

external (e.g. input/output device needs attention, timer)
internal, unintentional (e.g. divide-by-zero, out-of-bounds)
internal, intentional (system calls)

(list of more specific reasons not exhaustive because it varies…)

system call ∼ request from program for the OS to do something
for it

that is made by deliberately triggering exception

quiz avoided other exception vocabulary because I don’t intend to
test about it

11

context switches and exceptions
context switch ∼ change registers values to differnet program

something the OS can do whenever it runs

only related to exceptions because OS runs due to execptions
means if program ‘ends’, OS had to run to do it
some some exception happened to do this — which one depends on
details of how it ended

12

anonymous feedback (2)
“ your lectures go over things big picture, but your quizzes are in depth. Even after reading the readings and slides,
I still feel we did not learn enough to answer the quizzes. Since its our first time learning this material, I think we
need it to be spelled out more. I also don’t like how when I try to find other resources on the topics, like different
types of exceptions, I have a hard time finding it out because everyone seems to define it differently, which means it
is even more important that we get the information from you. I think it might be helpful if we had a glossary or
terms, with exact definitions all in one page, and maybe a flow chart for how things relate to each other? Or maybe
some links to textbook pages. I looked at the textbook linked, but it didn’t have enough regarding exceptions since
I am not confused about what they are, I am confused regarding your definition of them. I get why your reviews say
you expect too much, it is because you don’t give us enough”

13

I agree the readings for the kernel stuff probably should have a
glossary

when I point to textbooks in the ‘further resources’ for kernel, I
should note what terms they are using versus our reading/lecture
to make those references more useful

e.g. I like ‘Dive Into Systems’ explanation, but they never actually use
the word ‘exception’ (just interrupt (external exception) and ‘trap’
(exception triggered by trying to run something)

14

signals
Unix-like operating system feature
like exceptions for processes:

can be triggered by external process
kill command/system call

can be triggered by special events
pressing control-C
other events that would normal terminate program

‘segmentation fault’
illegal instruction
divide by zero

can invoke signal handler (like exception handler)
15

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor program counter changes thread program counter changes

program counter = instruction to run next

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

16

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor program counter changes thread program counter changes

program counter = instruction to run next

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

16

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor program counter changes thread program counter changes

program counter = instruction to run next

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

16

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor program counter changes thread program counter changes

program counter = instruction to run next

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

16

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

17

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

17

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

17

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

18

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

18

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

18

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
19

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
19

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
19

‘forwarding’ exception as signal
user mode kernel mode

...

examine exception info
notice signal handler setup

something happens
example: control-C pressed start exception handler

start signal handler

cleanup signal handler

back to normal program
20

SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

21

SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

21

handling Segmentation Fault
...
void handle_sigsegv(int num) {

puts("got SIGSEGV");
}

int main(void) {
struct sigaction act;
act.sa_handler = handle_sigsegv;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGSEGV, &act, NULL);

asm("movq %rax, 0x12345678");
}

got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV

22

handling Segmentation Fault
...
void handle_sigsegv(int num) {

puts("got SIGSEGV");
}

int main(void) {
struct sigaction act;
act.sa_handler = handle_sigsegv;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGSEGV, &act, NULL);

asm("movq %rax, 0x12345678");
}

got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV

22

signal API
sigaction — register handler for signal

kill — send signal to process
uses process ID (integer, retrieve from getpid())

pause — put process to sleep until signal received

sigprocmask — temporarily block/unblock some signals from
being received

signal will still be pending, received if unblocked

… and much more

23

kill command
kill command-line command : calls the kill() function

kill 1234 — sends SIGTERM to pid 1234
in C: kill(1234, SIGTERM)

kill -USR1 1234 — sends SIGUSR1 to pid 1234
in C: kill(1234, SIGUSR1)

24

kill() not always immediate

kill(B, SIGUSR1)

pid A (user) pid A (kernel)

OS records signal

kill() returns

(on other core)
pid B (user) pid B (kernel)

OS acts on signal

signal handler starts
25

SA_RESTART
struct sigaction sa; …
sa.sa_flags = SA_RESTART;

general version:
sa.sa_flags = SA_NAME | SA_NAME | SA_NAME; (or 0)

if SA_RESTART included:
after signal handler runs, attempt to restart interrupted operations (e.g.
reading from keyboard)

if SA_RESTART not included:
after signal handler runs, interrupted operations return typically an error
(detect by checking errno == EINTR)

26

output of this?

void handle_usr1(int num) {
write(1, "X", 1);
kill(2000, SIGUSR1);
_exit(0);

}

int main() {
struct sigaction act;
...
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
kill(1000, SIGUSR1);

}

pid 1000
void handle_usr1(int num) {

write(1, "Y", 1);
_exit(0);

}

int main() {
struct sigaction act;
...
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);

}

pid 2000

If these run at same time, expected output?
A. XY B. X C. Y
D. YX E. X or XY, depending on timing F. crash
G. (nothing) H. something else 27

output of this? (v2)
void handle_usr1(int num) {

write(1, "X", 1);
kill(2000, SIGUSR1);
_exit(0);

}

int main() {
struct sigaction act;
...
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act);
kill(1000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "Y", 1);
_exit(0);

}

int main() {
struct sigaction act;
...
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act);
while (1) pause();

}

pid 2000

If these run at same time, expected output?
A. XY B. X C. Y
D. YX E. X or XY, depending on timing F. crash
G. (nothing) H. something else 28

backup slides

29

sending signals (1)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000

30

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

31

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

31

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

31

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

31

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

31

sending signals (2)

void handle_usr1(int num) {
write(1, "Y", 1);
kill(2000, SIGUSR2);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
sleep(60); // wait for pid 2000 to start
kill(2000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "X", 1);
kill(1000, SIGUSR1);

}

void handle_usr2(int num) {
write(1, "Z", 1);
kill(1000, SIGTERM);
_exit(0);

}

int main() {
struct sigaction act;
... // initialize act
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
act.sa_handler = &handle_usr2;
sigaction(SIGUSR2, &act, NULL);
while (1) pause();

}

pid 2000

31

‘forwarding’ exception as signal
user mode kernel mode

...

examine exception info
notice signal handler setup

something happens
example: control-C pressed start exception handler

start signal handler

cleanup signal handler

back to normal program
32

x86-64 Linux signal delivery (1)
suppose: signal (with handler) happens while foo() is running

should stop in the middle of foo()

do signal handler

go back to foo() without…

changing local variables (possibly in registers)

(and foo() doesn’t have code to do that)

33

x86-64 Linux signal delivery (1)
suppose: signal (with handler) happens while foo() is running

should stop in the middle of foo()

do signal handler

go back to foo() without…

changing local variables (possibly in registers)

(and foo() doesn’t have code to do that)

33

x86-64 Linux signal delivery (2)
suppose: signal (with handler) happens while foo() is running

OS saves registers to user stack

OS modifies user registers, PC to call signal handler

address of __restore_rt
saved registers
PC when signal happened
local variables for foo…

the stack

stack pointer
before signal delivered

stack pointer
when signal handler started

34

x86-64 Linux signal delivery (3)
handle_sigint:

...
ret

...
__restore_rt:

// 15 = "sigreturn" system call
movq $15, %rax
syscall

__restore_rt is return address for signal handler
sigreturn syscall restores pre-signal state

if SA_RESTART set, restarts interrupted operation
also handles caller-saved registers
also might change which signals blocked (depending how sigaction was
called) 35

	signals
	idea
	example / sigaction
	what's going on
	signal IDs/events
	wait, SIGSEGV?
	signal API
	deferred signals?
	SA_RESTART
	exercise

	backup slides
	alt example
	delivery

