
1

last time
fork — create new process by copying current

returns twice
new pid in original ‘parent’ process
0 (sentinel value) in ‘child’ process
both processes are running immediately afterwards (potentially at
different speeds)

exec* — replace program in current process
specify executable file to load
copies arguments into new program’s argv

2

anonymous feedback (1)
“I feel like the feedback left for this class gets disregarded. Student put in tons of time to write out issues they have

with the class many of which get skimmed over in seconds with a response like ”some students said the lab was too

hard, I don’t think so”. This comes off as condescending and it feels very discouraging.…

did think lab was too long, but not going to fix this semester, so didn’t
talk much about it
(also needed to talk to TAs first to know what might/might not help)
I didn’t think the lab was way too long based on reports of how many
finished/etc.
likely supply shared memory code next semester

(also some other issues with lab size — e.g. next lab probably may be
too short)

3

anonymous feedback (2)
“…I understand that most students may not be experiencing difficulties with the class and that it may seem like a

waste to spend time addressing issues that only a small group of students have with the class but I think that it’s

still very important that these issues get addressed in order to help catch people having issues with the class up to

speed. For me personally the class at times feels like a light general coverage of the concepts covered followed by a

deep dive that focuses on particular edge cases and interactions between concepts. I wish we could spend just a

little more time on the bigger picture of some of these topics before going too in depth with them.”

“Would it be possible to spend a little bit longer on the importance of methods before delving into examples of their

use and questions about them? I feel like we’re not given enough information to solve most questions and it leaves

me confused as to if I’m taking away what I’m supposed to from the lecture”

some theme of more ‘bigger picture’ stuff…
but my impression of bigger picture maybe not yours???

are more examples of motivational use cases bigger picture?
specifics are usually easier for me to actually improve things

“I wanted to comment that I really like the examples given in lecture and they really help cement a topic. These

examples give context and help me understand a topic and how things work. I was wondering if we can have more

and perhaps have more that are at the level of difficulty of the quizzes. I do find that the quizzes are a pretty big

jump in level from the lectures.”

4

anonymous feedback (3)
“I’d like it if the quizzes opened a little sooner on Thursdays so I
could work on the quizzes after class (while the lecture info is still
fresh in my mind)”

probably could do earlier most weeks since quiz is mostly written in
advance
but sometimes late edits and allowing about enough time for some TAs
to look over
times were set based on when I could consistently have quizzes ready

5

on quiz grading
am aware we’re behind on Q2 grading

6

Q2 (B+D)
signal handlers run in process, go back to same process
(via OS code to cleanup handler)

return address can’t go to other process since one process can’t access
another’s memory

kill() might not take effect immediately

if program is running on another core or not running yet

also, program can continue after kill while other sighandler runs

system records signal and acts on it later
7

Q3 (B)
PID reuse:

possible after waited for a process
(but not early so you waitpid isn’t ambiguous)

8

Q4 (1)
should have specified other processes not sending signals to these

child gets other_pid==0 [sentinal value, not a real PID]

parent gets other_pid==(pid of child)

SIGUSR1 in child triggers SIGUSR2 in parent

SIGUSR1 in parent triggers SIGUSR2 in child

assumption: signals handled one at a time
not ensured by given code, but could be by setting sa_mask

9

Q4 (2)
A: 0:SIGUSR1 0:SIGUSR2 43:SIGUSR1 43:SIGUSR2, 0

parent SIGUSR1, then parent SIGUSR2, without child’s SIGUSR1
running first

B: 0:SIGUSR1 32:SIGUSR2 32:SIGUSR1 0:SIGUSR2
32:SIGUSR1 printed, but parent would have exit() after printing
32:SIGUSR2

C: 0:SIGUSR1 43:SIGUSR1 44:SIGUSR2 0:SIGUSR2
three different other_pid values

D: 0:SIGUSR1 50:SIGUSR2 0:SIGUSR2
parent should’ve printed 50:SIGUSR1 before sending SIGUSR2 to child

10

Q6
pid1=fork

pid2=fork

global += 1
print

global+=2
waitpid
print
exitwaitpid

pid2=fork

11

some POSIX command-line features
searching for programs

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

12

some POSIX command-line features
searching for programs

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

13

some POSIX command-line features
searching for programs

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

14

file descriptors
struct process_info { /* <-- in the kernel somewhere */

...
struct open_file_description *files[SIZE};
...

};
...
process−>files[file_descriptor]

Unix: every process has
array (or similar) of open file descriptions
“open file”: terminal · socket · regular file · pipe

file descriptor = index into array
usually what’s used with system calls
stdio.h FILE*s usually have file descriptor + buffer

15

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

16

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

16

getting file descriptors
int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2", O_WRONLY | ...);
int rdwr_fd = open("file3", O_RDWR);

used internally by fopen(), etc.

also for files without normal filenames…:
int fd = shm_open("/shared_memory", O_RDWR, 0666); // shared memory
int socket_fd = socket(AF_INET, SOCK_STREAM, 0); // TCP socket
int term_fd = posix_openpt(O_RDWR); // pseudo-terminal
int pipe_fds[2]; pipe(pipefds); // "pipes" (later)
...

17

close
int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors
that refer to same “open file description”
(e.g. in fork()ed child or created via (later) dup2)

if last file descriptor for open file description, resources deallocated

returns 0 on success
returns -1 on error

e.g. ran out of disk space while finishing saving file
18

shell redirection
./my_program ... < input.txt:

run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo > output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)

19

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

pagetable
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
redirection/etc.:

setup stdin/stdout before exec

old memory
discarded

20

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

page table

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

pagetable

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

21

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

page table

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

pagetable

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

21

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

page table

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

pagetable

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)21

typical pattern with redirection

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

parent

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

child
main() {

…
}

22

redirecting with exec
standard output/error/input are files

(C stdout/stderr/stdin; C++ cout/cerr/cin)

(probably after forking) open files to redirect

…and make them be standard output/error/input
using dup2() library call

then exec, preserving new standard output/etc.

23

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

24

reassigning and file table
// something like this in OS code
struct process_info {

...
struct open_file_description *files[SIZE];
....

};
...
process−>files[STDOUT_FILENO] = process−>files[opened−fd];

syscall: dup2(opened-fd, STDOUT_FILENO);

25

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused
26

dup2 example
redirects stdout to output to output.txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",

O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)

do_something_about_error();

dup2(fd, STDOUT_FILENO);
/* now both write(fd, ...) and write(STDOUT_FILENO, ...)

write to output.txt
*/

close(fd); /* only close original, copy still works! */

printf("This will be sent to output.txt.\n"); 27

open/dup/close/etc. and fd array
// something like this in OS code
struct process_info {
...
struct open_file_description *files[NUM];

};

open: files[new_fd] = ...;

dup2(from, to): files[to] = files[from];

close: files[fd] = NULL;

fork:
for (int i = ...)

child−>files[i] = parent−>files[i];

(plus extra work to avoid leaking memory)
28

pipes
special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes
like implementing shell pipelines

29

pipe()
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
/* normal case: */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];

then from one process…
write(write_fd, ...);

and from another
read(read_fd, ...);

30

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

31

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

31

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

31

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

31

pipe and pipelines
ls -1 | grep foo

pipe(pipe_fd);
ls_pid = fork();
if (ls_pid == 0) {

dup2(pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"ls", "-1", NULL};
execv("/bin/ls", argv);

}
grep_pid = fork();
if (grep_pid == 0) {

dup2(pipe_fd[0], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

}
close(pipe_fd[0]); close(pipe_fd[1]);
/* wait for processes, etc. */

32

example execution
parent

pipe() — fds 3 [read], 4 [write]

child 1

4→ stdout

close 3,4

exec ls

child 2

3→ stdin

close 3,4

exec grep
close 3,4

33

exercise
pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */

close(pipe_fds[0]);
char c = 'A';
write(pipe_fds[1], &c, 1);
exit(0);

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read %d bytes\n", count);

}

The child is trying to send the character A to the parent, but the
above code outputs read 0 bytes instead of read 1 bytes.
What happened?

34

exercise solution
pipe() is after fork — two pipes, one in child, one in parent

35

Unix API summary
spawn and wait for program: fork (copy), then

in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close
one interface for regular files, pipes, network, devices, …

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection/pipelines
open() or pipe() to create new file descriptors
dup2 in child to assign file descriptor to index 0, 1

36

backup slides

37

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

38

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

copy

38

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

38

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

38

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

38

exit statuses
int main() {

return 0; /* or exit(0); */
}

39

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

40

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

40

shell
allow user (= person at keyboard) to run applications

user’s wrapper around process-management functions

41

aside: shell forms
POSIX: command line you have used before

also: graphical shells
e.g. OS X Finder, Windows explorer

other types of command lines?

completely different interfaces?

42

searching for programs
POSIX convention: PATH environment variable

example: /home/cr4bd/bin:/usr/bin:/bin
list of directories to check in order

environment variables = key/value pairs stored with process
by default, left unchanged on execve, fork, etc.

one way to implement: [pseudocode]
for (directory in path) {

execv(directory + "/" + program_name, argv);
}

43

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

44

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

44

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

44

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

44

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

44

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

44

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

45

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

45

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

45

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

45

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

45

read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

46

layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

47

why the extra layer
better (but more complex to implement) interface:

read line
formatted input (scanf, cin into integer, etc.)
formatted output

less system calls (bigger reads/writes) sometimes faster
buffering can combine multiple in/out library calls into one system call

more portable interface
cin, printf, etc. defined by C and C++ standards

48

pipe() and blocking
BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?

49

pattern with multiple?
parent

fork

fork

waitpid(first,…)

first child process

second child process
exec

exit()

exec
exit()

waitpid(second,…) 50

this class: focus on Unix
Unix-like OSes will be our focus

we have source code

used to from 2150, etc.?

have been around for a while

xv6 imitates Unix

51

Unix history

OpenServer
6.x

UnixWare
7.x

(System V
R5)

HP-UX
11i+

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

Open Source

Mixed/Shared Source

Closed Source

No future releases

HP-UX
1.0 to 1.2

OpenSolaris
& derivatives

(illumos, etc.)

System III

System V
R1 to R2

OpenServer
5.0.5 to 5.0.7

OpenServer
5.0 to 5.04

SCO Unix
3.2.4

SCO Xenix
V/386

SCO Xenix
V/386

SCO Xenix
V/286

SCO Xenix

Xenix
3.0

Xenix
1.0 to 2.3

PWB/Unix

AIX
1.0

AIX
3.0-7.2

OpenBSD
2.3-6.1

OpenBSD
1.0 to 2.2

SunOS
1.2 to 3.0

SunOS
1 to 1.1

Unix/32V

Unix
Version 1 to 4

Unix
Version 5 to 6

Unix
Version 7

Unnamed PDP-7 operating system

BSD
1.0 to 2.0

BSD
3.0 to 4.1

BSD 4.2

Unix
Version 8

Unix
9 and 10

(last versions
from

Bell Labs)

NexTSTEP/
OPENSTEP
1.0 to 4.0

Mac OS X
Server

Mac OS X,
OS X,

macOS
10.0 to 10.12

(Darwin
1.2.1 to 17)

Minix
1.x

Minix
2.x

Minix
3.1.0-3.4.0

Linux
2.x

Linux
0.95 to 1.2.x

Linux 0.0.1

BSD
4.4 to

4.4 lite2

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.3-7.1

FreeBSD
1.0 to
2.2.x

386BSD

BSD NET/2

Solaris
10

Solaris
11.0-11.3

System V
R4

Solaris
2.1 to 9

BSD 4.3

SunOS
4

HP-UX
2.0 to 3.0

HP-UX
6 to 11

System V
R3

UnixWare
1.x to 2.x
(System V

R4.2)

BSD 4.3
Tahoe

BSD 4.3
Reno

FreeBSD
3.0 to 3.2

FreeBSD
3.3-11.x

Linux
3.x

Linux
4.x OpenServer

10.x

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

DragonFly
BSD

1.0 to 4.8

image: Wikpedia/Eraserhead1+Infinity0+Sav_vas 52

POSIX: standardized Unix
Portable Operating System Interface (POSIX)

“standard for Unix”

current version online:
https://pubs.opengroup.org/onlinepubs/9699919799/

(almost) followed by most current Unix-like OSes

…but OSes add extra features

…and POSIX doesn’t specify everything

53

what POSIX defines
POSIX specifies the library and shell interface

source code compatibility

doesn’t care what is/is not a system call…

doesn’t specify binary formats…

idea: write applications for POSIX, recompile and run on all
implementations

this was a very important goal in the 80s/90s
at the time, no dominant Unix-like OS (Linux was very immature)

54

getpid
pid_t my_pid = getpid();
printf("my pid is %ld\n", (long) my_pid);

55

process ids in ps
cr4bd@machine:~$ ps

PID TTY TIME CMD
14777 pts/3 00:00:00 bash
14798 pts/3 00:00:00 ps

56

read/write
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

56

read’ing one byte at a time
string s;
ssize_t amount_read;
char c;
/* cast to void * not needed in C */
while ((amount_read = read(STDIN_FILENO, (void*) &c, 1)) > 0) {

/* amount_read must be exactly 1 */
s += c;

}
if (amount_read == −1) {

/* some error happened */
perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */

}
57

write example
/* cast to void * optional in C */
write(STDOUT_FILENO, (void *) "Hello, World!\n", 14);

58

aside: environment variables (1)
key=value pairs associated with every process:
$ printenv
MODULE_VERSION_STACK=3.2.10
MANPATH=:/opt/puppetlabs/puppet/share/man
XDG_SESSION_ID=754
HOSTNAME=labsrv01
SELINUX_ROLE_REQUESTED=
TERM=screen
SHELL=/bin/bash
HISTSIZE=1000
SSH_CLIENT=128.143.67.91 58432 22
SELINUX_USE_CURRENT_RANGE=
QTDIR=/usr/lib64/qt-3.3
OLDPWD=/zf14/cr4bd
QTINC=/usr/lib64/qt-3.3/include
SSH_TTY=/dev/pts/0
QT_GRAPHICSSYSTEM_CHECKED=1
USER=cr4bd
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:
MODULE_VERSION=3.2.10
MAIL=/var/spool/mail/cr4bd
PATH=/zf14/cr4bd/.cargo/bin:/zf14/cr4bd/bin:/usr/lib64/qt-3.3/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/puppetlabs/bin:/usr/cs/contrib/bin:.
PWD=/zf14/cr4bd
LANG=en_US.UTF-8
MODULEPATH=/sw/centos/Modules/modulefiles:/sw/linux-any/Modules/modulefiles
LOADEDMODULES=
KDEDIRS=/usr
…
_=/usr/bin/printenv

59

aside: environment variables (2)
environment variable library functions:

getenv("KEY") → value
putenv("KEY=value") (sets KEY to value)
setenv("KEY", "value") (sets KEY to value)

int execve(char *path, char **argv, char **envp)

char *envp[] = { "KEY1=value1", "KEY2=value2", NULL };
char *argv[] = { "somecommand", "some arg", NULL };
execve("/path/to/somecommand", argv, envp);

normal exec versions — keep same environment variables

60

aside: environment variables (3)
interpretation up to programs, but common ones…

PATH=/bin:/usr/bin
to run a program ‘foo’, look for an executable in /bin/foo, then
/usr/bin/foo

HOME=/zf14/cr4bd
current user’s home directory is ‘/zf14/cr4bd’

TERM=screen-256color
your output goes to a ‘screen-256color’-style terminal

…
61

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {

waitpid(pid, ...);
...

}
62

waiting for all children
#include <sys/wait.h>
...
while (true) {
pid_t child_pid = waitpid(−1, &status, 0);
if (child_pid == (pid_t) −1) {

if (errno == ECHILD) {
/* no child process to wait for */
break;

} else {
/* some other error */

}
}
/* handle child_pid exiting */

}

63

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses as processes finish */
while ((pid = waitpid(−1, ...)) != −1) {

handleProcessFinishing(pid);
}

64

‘waiting’ without waiting
#include <sys/wait.h>
...
pid_t return_value = waitpid(child_pid, &status, WNOHANG);
if (return_value == (pid_t) 0) {
/* child process not done yet */

} else if (child_pid == (pid_t) −1) {
/* error */

} else {
/* handle child_pid exiting */

}

65

parent and child processes
every process (but process id 1) has a parent process
(getppid())
this is the process that can wait for it
creates tree of processes (Linux pstree command):

66

parent and child questions…
what if parent process exits before child?

child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()s (or equivalent) for child?
child process stays around as a “zombie”
can’t reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails

67

read’ing a fixed amount
ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {

/* cast to void * optional in C */
ssize_t amount_read =

read(STDIN_FILENO,
(void *) (result + offset),
amount_to_read − offset);

if (amount_read < 0) {
perror("read"); /* print error message */
... /* abort??? */

} else {
offset += amount_read;

}
} while (offset != amount_to_read && amount_read != 0);

68

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

69

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

69

write example (with error checking)
const char *ptr = "Hello, World!\n";
ssize_t remaining = 14;
while (remaining > 0) {

/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,

ptr,
remaining);

if (amount_written < 0) {
perror("write"); /* print error message */
... /* abort??? */

} else {
remaining −= amount_written;
ptr += amount_written;

}
} 70

partial writes
usually only happen on error or interruption

but can request “non-blocking”
(interruption: via signal)

usually : write waits until it completes
= until remaining part fits in buffer in kernel
does not mean data was sent on network, shown to user yet, etc.

71

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

72

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

72

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

72

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

72

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

72

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

72

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

73

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

73

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

73

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

73

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

73

read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

74

filesystem abstraction
regular files — named collection of bytes

also: size, modification time, owner, access control info, …

directories — folders containing files and directories
hierarchical naming: /net/zf14/cr4bd/fall2018/cs4414
mostly contains regular files or directories

75

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
...

int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);

76

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
path = filename
e.g. "/foo/bar/file.txt"

file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

77

open: file descriptors
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

return value = file descriptor (or -1 on error)

index into table of open file descriptions for each process

used by system calls that deal with open files

78

POSIX: everything is a file
the file: one interface for

devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

79

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {

close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {
char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {

printf("%c", buffer[i]);
}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 80

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {

close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {
char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {

printf("%c", buffer[i]);
}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 81

empirical evidence
8 0

374 01
210 012
30 0123
12 01234
3 012345
1 0123456
2 01234567
1 012345678

359 0123456789

81

partial reads
read returning 0 always means end-of-file

by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

82

pipe: closing?
if all write ends of pipe are closed

can get end-of-file (read() returning 0) on read end
exit()ing closes them

→ close write end when not using

generally: limited number of file descriptors per process

→ good habit to close file descriptors not being used

(but probably didn’t matter for read end of pipes in example)

83

dup2 exercise
recall: dup2(old_fd, new_fd)
int fd = open("output.txt", O_WRONLY | O_CREAT, 0666);
write(STDOUT_FILENO, "A", 1);
dup2(fd, STDOUT_FILENO);
pid_t pid = fork();
if (pid == 0) { /* child: */

dup2(STDOUT_FILENO, fd); write(fd, "B", 1);
} else {

write(STDOUT_FILENO, "C", 1);
}

Which outputs are possible?
A. stdout: ABC ; output.txt: empty D. stdout: A ; output.txt: BC
B. stdout: AC ; output.txt: B E. more?
C. stdout: A ; output.txt: CB

84

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only
can’t be shared?

85

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants
shared as read-only

can’t be shared?

85

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only

can’t be shared?

85

trick for extra sharing
sharing writeable data is fine — until either process modifies it

example: default value of global variables
might typically not change
(or OS might have preloaded executable’s data anyways)

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

86

trick for extra sharing
sharing writeable data is fine — until either process modifies it

example: default value of global variables
might typically not change
(or OS might have preloaded executable’s data anyways)

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

86

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 1 0x12345
0x00602 1 1 0x12347
0x00603 1 1 0x12340
0x00604 1 1 0x200DF
0x00605 1 1 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

87

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

87

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

87

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 1 0x300FD
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

87

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-onlyshared
read-only

copied
for
parent’s
write

←no longer
shared
←on parent

write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

88

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-only

shared
read-only

copied
for
parent’s
write

←no longer
shared
←on parent

write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

88

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-only

shared
read-only

copied
for
parent’s
write

←no longer
shared

←on parent
write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

88

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-only

shared
read-only

copied
for
parent’s
write

←no longer
shared

←on parent
write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

88

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-onlyshared
read-only

copied
for
parent’s
write

←no longer
shared
←on parent

write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

88

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

89

	shell features
	fd management
	I/O redirection: syntax, method preview
	pipelines

	files in POSIX, part 1
	interlude: file descriptors
	getting file descriptors
	close
	Shell: redirection
	dup2: redirection mechanism
	open/close/dup/fork and fd array

	pipelines
	pipe
	pipe example
	pipe and pipelines
	pipe exercise

	POSIX api summary
	backup slides
	wait statuses

	shells
	shells, the concept
	searching for programs
	kernel buffering
	layers of file interfaces
	pipe blocking
	waiting for more than one?
	POSIX and Unix
	getpid
	read, write
	aside: environment variables
	wait for mutliple
	wait for all
	wait for all (alt)
	waitpid WNOHANG
	parent and child

	partial reads and writes
	partial reads and read error checking
	partial writes and write error checking
	kernel buffering
	open
	Unix: everything is a file

	pipe exercise (partial reads)
	pipe: closing?
	dup2 exercise
	aside: copy-on-write
	fork with copy-on-write

