
1

last time
locality — why caches can work ‘automatically’

temporal: accessed memory[X] → accessed memory[X] soon
spatial: accessed memory[X] → accesss memory[X±δ] soon

direct-mapped cache design
divide cache, memory into ‘blocks’
power of two number of rows (‘sets’) with one block each
address into tag / [set] index / [block] offset
always store whole blocks (addresses with offset 0 to offset MAX)
always store what was just read

2

anonymous feedback

3

licenses.txt (for part 2 of pagetable)
want you to know open source code online is not just free for all

understand how authors intend things be used

and purported legal restrictions for use
not a class on what restrictions are enforceable, etc.

look at [at least] three licenses, decide what matches your goals for
code

4

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 0

01 0

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 0

01 0

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 0

01 0

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 00000 mem[0x00]
mem[0x01]

01 0

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 00000 mem[0x00]
mem[0x01]

01 0

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 00000 mem[0x00]
mem[0x01]

01 1 01100 mem[0x62]
mem[0x63]

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 01100 mem[0x60]
mem[0x61]

01 1 01100 mem[0x62]
mem[0x63]

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 01100 mem[0x60]
mem[0x61]

01 1 01100 mem[0x62]
mem[0x63]

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 00000 mem[0x00]
mem[0x01]

01 1 01100 mem[0x62]
mem[0x63]

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 00000 mem[0x00]
mem[0x01]

01 1 01100 mem[0x62]
mem[0x63]

10 1 01100 mem[0x64]
mem[0x65]

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 00000 mem[0x00]
mem[0x01]

01 1 01100 mem[0x62]
mem[0x63]

10 1 01100 mem[0x64]
mem[0x65]

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 1 00000 mem[0x00]
mem[0x01]

01 1 01100 mem[0x62]
mem[0x63]

10 1 01100 mem[0x64]
mem[0x65]

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict

5

exercise

address (hex) result
00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)

index valid tag value

00

01

10

11

4 byte blocks, 4 sets

how is the 8-bit address 61 (01100001) split
up into tag/index/offset?

b block offset bits;
B = 2b byte block size;
s set index bits; S = 2s sets ;
t = m − (s + b) tag bits (leftover)

B = 4 = 2b byte block size
b = 2 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 4 tag bits

exercise: which accesses are hits?
tag index offset

6

exercise

address (hex) result
00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)

index valid tag value

00

01

10

11

4 byte blocks, 4 sets

how is the 8-bit address 61 (01100001) split
up into tag/index/offset?

b block offset bits;
B = 2b byte block size;
s set index bits; S = 2s sets ;
t = m − (s + b) tag bits (leftover)

B = 4 = 2b byte block size
b = 2 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 4 tag bits

exercise: which accesses are hits?
tag index offset

6

exercise

address (hex) result
00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)

index valid tag value

00

01

10

11

4 byte blocks, 4 sets

how is the 8-bit address 61 (01100001) split
up into tag/index/offset?

b block offset bits;
B = 2b byte block size;
s set index bits; S = 2s sets ;
t = m − (s + b) tag bits (leftover)

B = 4 = 2b byte block size
b = 2 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 4 tag bits

exercise: which accesses are hits?
tag index offset

6

exercise

address (hex) result
00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)

index valid tag value

00

01

10

11

4 byte blocks, 4 sets

how is the 8-bit address 61 (01100001) split
up into tag/index/offset?

b block offset bits;
B = 2b byte block size;
s set index bits; S = 2s sets ;
t = m − (s + b) tag bits (leftover)

B = 4 = 2b byte block size
b = 2 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 4 tag bits

exercise: which accesses are hits?

tag index offset

6

exercise

address (hex) result
00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)

index valid tag value

00

01

10

11

4 byte blocks, 4 sets

how is the 8-bit address 61 (01100001) split
up into tag/index/offset?

b block offset bits;
B = 2b byte block size;
s set index bits; S = 2s sets ;
t = m − (s + b) tag bits (leftover)

B = 4 = 2b byte block size
b = 2 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 4 tag bits

exercise: which accesses are hits?
tag index offset

6

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart
array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

7

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

7

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

7

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart
array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

7

simulated misses: BST lookups

10000 20000 30000 40000
data size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

da
ta

 c
ac

he
 m

iss
es

 p
er

 in
st

ru
ct

io
n

data cache misses for random binary search tree lookups
direct-mapped

(simulated 16KB direct-mapped data cache; excluding BST setup)
8

actual misses: BST lookups

0 20000 40000 60000 80000
data size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

da
ta

 c
ac

he
 m

iss
es

 p
er

 in
st

ru
ct

io
n

data cache misses for random binary search tree lookups
my desktop

(actual 32KB more complex data cache)
(only one set of measurements + other things on machine + excluding initial load) 9

simulated misses: matrix multiplies

0 20 40 60 80 100
N

0.00

0.02

0.04

0.06

ca
ch

e
m

iss
es

 p
er

 in
st

ru
ct

io
n

data cache misses for NxN matrix multiply
direct-mapped

(simulated 16KB direct-mapped data cache; excluding initial load)
10

actual misses: matrix multiplies

0 20 40 60 80 100
N

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ca
ch

e
m

iss
es

 p
er

 in
st

ru
ct

io
n

cache misses for NxN matrix multiply
my desktop

(actual 32KB more complex data cache; excluding matrix initial load)
(only one set of measurements + other things on machine) 11

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1

way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1

way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

12

associative lookup possibilities
none of the blocks for the index are valid

none of the valid blocks for the index match the tag
something else is stored there

one of the blocks for the index is valid and matches the tag

13

cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

tag

14

replacement policies

index valid tag value valid tag value LRU

0 1 000000
mem[0x00]
mem[0x01] 1 011000

mem[0x60]
mem[0x61] 1

1 1 011000
mem[0x62]
mem[0x63] 0 1

2-way set associative, 2 byte blocks, 2 sets

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss

how to decide where to insert 0x64?

track which block was read least recently
updated on every access

15

replacement policies

index valid tag value valid tag value LRU

0 1 000000
mem[0x00]
mem[0x01] 1 011000

mem[0x60]
mem[0x61] 1

1 1 011000
mem[0x62]
mem[0x63] 0 1

2-way set associative, 2 byte blocks, 2 sets

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss

how to decide where to insert 0x64?

track which block was read least recently
updated on every access

15

example replacement policies
least recently used

take advantage of temporal locality
at least dlog2(E!)e bits per set for E-way cache

(need to store order of all blocks)

approximations of least recently used
implementing least recently used is expensive
really just need “avoid recently used” — much faster/simpler
good approximations: E to 2E bits

first-in, first-out
counter per set — where to replace next

(pseudo-)random
no extra information!
actually works pretty well in practice 16

associativity terminology
direct-mapped — one block per set

E-way set associative — E blocks per set
E ways in the cache

fully associative — one set total (everything in one set)

17

Tag-Index-Offset formulas
m memory addreses bits

E number of blocks per set (“ways”)

S = 2s number of sets

s (set) index bits

B = 2b block size

b (block) offset bits

t = m − (s + b) tag bits

C = B × S × E cache size (excluding metadata)
18

cache accesses and C code (1)
int scaleFactor;

int scaleByFactor(int value) {
return value * scaleFactor;

}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?

4-byte read of scaleFactor
8-byte read of return address

19

cache accesses and C code (1)
int scaleFactor;

int scaleByFactor(int value) {
return value * scaleFactor;

}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?
4-byte read of scaleFactor
8-byte read of return address

19

possible scaleFactor use
for (int i = 0; i < size; ++i) {

array[i] = scaleByFactor(array[i]);
}

20

misses and code (2)
scaleByFactor:

movl scaleFactor, %eax
imull %edi, %eax
ret

suppose each time this is called in the loop:
return address located at address 0x7ffffffe43b8
scaleFactor located at address 0x6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
return address scaleFactor

tag
index
offset

21

misses and code (2)
scaleByFactor:

movl scaleFactor, %eax
imull %edi, %eax
ret

suppose each time this is called in the loop:
return address located at address 0x7ffffffe43b8
scaleFactor located at address 0x6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
return address scaleFactor

tag 0xfffffffc 0xd7
index 0x10e 0x10e
offset 0x38 0x20

21

misses and code (2)
scaleByFactor:

movl scaleFactor, %eax
imull %edi, %eax
ret

suppose each time this is called in the loop:
return address located at address 0x7ffffffe43b8
scaleFactor located at address 0x6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
return address scaleFactor

tag 0xfffffffc 0xd7
index 0x10e 0x10e
offset 0x38 0x20

21

conflict miss coincidences?
obviously I set that up to have the same index

have to use exactly the right amount of stack space…

but one of the reasons we’ll want something better than
direct-mapped cache

22

C and cache misses (warmup 1)
int array[4];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?

23

some possiblities
… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!

if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

24

some possiblities
… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!

if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

25

some possiblities
… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!
if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

26

some possiblities
… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!
if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}

27

aside: alignment
compilers and malloc/new implementations usually try align values

align = make address be multiple of something

most important reason: don’t cross cache block boundaries

28

C and cache misses (warmup 2)
int array[4];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
odd_sum += array[1];
odd_sum += array[3];
Assume everything but array is kept in registers (and the compiler does not do
anything funny).

Assume array[0] at beginning of cache block.
How many data cache misses on a 1-set direct-mapped cache with
8B blocks? 29

exercise solution

… …array[0]array[1]array[2]array[3]

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[1] (miss) {array[0], array[1]}
read array[3] (miss) {array[2], array[3]}

31

backup slides

32

arrays and cache misses (1)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {

even_sum += array[i + 0];
odd_sum += array[i + 1];

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 2KB
direct-mapped cache with 16B cache blocks?

33

arrays and cache misses (2)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 2KB
direct-mapped cache with 16B cache blocks?

34

arrays and cache misses (2b)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 4KB
direct-mapped cache with 16B cache blocks?

36

inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore

37

inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L1 cache

L2 cache
inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore

37

inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore

37

Tag-Index-Offset formulas (direct-mapped)
(formulas derivable from prior slides)
S = 2s number of sets

s (set) index bits

B = 2b block size

b (block) offset bits

m memory addreses bits

t = m − (s + b) tag bits

C = B × S cache size (if direct-mapped)
38

Tag-Index-Offset formulas (direct-mapped)
(formulas derivable from prior slides)
S = 2s number of sets

s (set) index bits

B = 2b block size

b (block) offset bits

m memory addreses bits

t = m − (s + b) tag bits

C = B × S cache size (if direct-mapped)
38

cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 40

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 40

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

exercise (1)
initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

41

exercise (2)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

42

exercise (3)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of conflict misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

43

prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?

44

prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?

44

common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

45

common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

45

prefetching idea
look for sequential accesses

bring in guess at next-to-be-accessed value

if right: no cache miss (even if never accessed before)

if wrong: possibly evicted something else — could cause more
misses

fortunately, sequential access guesses almost always right

46

quiz exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block
(set index 0)

one cache block
(set index 1)

one cache block
(set index 0)

one cache block
(set index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[6] (miss) {array[0], array[1]} {array[6], array[7]}
read array[1] (hit) {array[0], array[1]} {array[6], array[7]}
read array[4] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}
read array[2] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[6], array[7]}
read array[8] (miss) {array[8], array[9]} {array[6], array[7]}

48

quiz exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block
(set index 0)

one cache block
(set index 1)

one cache block
(set index 0)

one cache block
(set index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[6] (miss) {array[0], array[1]} {array[6], array[7]}
read array[1] (hit) {array[0], array[1]} {array[6], array[7]}
read array[4] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}
read array[2] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[6], array[7]}
read array[8] (miss) {array[8], array[9]} {array[6], array[7]}

48

quiz exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block
(set index 0)

one cache block
(set index 1)

one cache block
(set index 0)

one cache block
(set index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[6] (miss) {array[0], array[1]} {array[6], array[7]}
read array[1] (hit) {array[0], array[1]} {array[6], array[7]}
read array[4] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}
read array[2] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[6], array[7]}
read array[8] (miss) {array[8], array[9]} {array[6], array[7]}

48

not the quiz problem

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block one cache bloc one cache blockone cache block

memory access single set with 2-ways, LRU first
— ---, ---
read array[0] (miss) ---, {array[0], array[1]}
read array[3] (miss) {array[0], array[1]}, {array[2], array[3]}
read array[6] (miss) {array[2], array[3]}, {array[6], array[7]}
read array[1] (miss) {array[6], array[7]}, {array[0], array[1]}
read array[4] (miss) {array[0], array[1]}, {array[3], array[4]}
read array[7] (miss) {array[3], array[4]}, {array[6], array[7]}
read array[2] (miss) {array[6], array[7]}, {array[2], array[3]}
read array[5] (miss) {array[2], array[3]}, {array[5], array[6]}
read array[8] (miss) {array[5], array[6]}, {array[8], array[9]}

if 1-set 2-way cache instead of 2-set 1-way cache:

50

C and cache misses (4)
typedef struct {

int a_value, b_value;
int other_values[6];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

51

C and cache misses (4, rewrite)
int array[40]
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 40; i += 8)

a_sum += array[i];
for (int i = 1; i < 40; i += 8)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array starts at beginning of cache block.

How many data cache misses on a 2-way set associative 128B
cache with 16B cache blocks and LRU replacement?

52

C and cache misses (4, solution pt 1)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing 0, 8, 16, 24, 32, 1, 9, 17, 25, 33

0 (set 0), 8 (set 2), 16 (set 0), 24 (set 2), 32 (set 0)

1 (set 0), 9 (set 2), 17 (set 0), 25 (set 2), 33 (set 0)

53

C and cache misses (4, solution pt 1)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing 0, 8, 16, 24, 32, 1, 9, 17, 25, 33

0 (set 0), 8 (set 2), 16 (set 0), 24 (set 2), 32 (set 0)

1 (set 0), 9 (set 2), 17 (set 0), 25 (set 2), 33 (set 0)

53

C and cache misses (4, solution pt 2)
access set 0 after (LRU first) result
— —, —
array[0] —, array[0 to 3] miss
array[16] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss
array[1] array[32 to 35], array[0 to 3] miss
array[17] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss

6 misses for set 0

54

C and cache misses (4, solution pt 3)
access set 2 after (LRU first) result
— —, —
array[8] —, array[8 to 11] miss
array[24] array[8 to 11], array[24 to 27] miss
array[9] array[8 to 11], array[24 to 27] hit
array[25] array[16 to 19], array[32 to 35] hit

2 misses for set 1

55

C and cache misses (3)
typedef struct {

int a_value, b_value;
int other_values[10];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

observation: 12 ints in struct: only first two used
equivalent to accessing array[0], array[12], array[24], etc.
…then accessing array[1], array[13], array[25], etc. 56

C and cache misses (3, rewritten?)
int array[60];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 60; i += 12)

a_sum += array[i];
for (int i = 1; i < 60; i += 12)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array at beginning of cache block.

How many data cache misses on a 128B two-way set associative
cache with 16B cache blocks and LRU replacement?
observation 1: first loop has 5 misses — first accesses to blocks
observation 2: array[0] and array[1], array[12] and array[13], etc. in
same cache block

57

C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49

0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

58

C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49

0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

58

C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49
0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)

each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

58

C and cache misses (3)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? 59

C and cache misses (3, rewritten?)
item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 1024; i += 128)

a_sum += array[i];
for (int i = 1; i < 1024; i += 128)

b_sum += array[i];

60

C and cache misses (4)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 4-way set associative 2KB
direct-mapped cache with 16B cache blocks? 61

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

62

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

62

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]

block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]

block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]

block at 2032+2KB: array[1020] through array[1023]

62

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

62

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …

address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]

63

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]

block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255] 63

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255] 63

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255] 63

arrays and cache misses (3)
int sum; int array[1024]; // 4KB array
for (int i = 8; i < 1016; i += 1) {

int local_sum = 0;
for (int j = i − 8; j < i + 8; j += 1) {

local_sum += array[i] * (j − i);
}
sum += (local_sum − array[i]);

}
Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 2KB
direct-mapped cache with 16B cache blocks? 64

Tag-Index-Offset exercise
m memory addreses bits (Y86-64: 64)
E number of blocks per set (“ways”)
S = 2s number of sets
s (set) index bits
B = 2b block size
b (block) offset bits
t = m − (s + b) tag bits
C = B × S × E cache size (excluding metadata)
My desktop:

L1 Data Cache: 32 KB, 8 blocks/set, 64 byte blocks
L2 Cache: 256 KB, 4 blocks/set, 64 byte blocks
L3 Cache: 8 MB, 16 blocks/set, 64 byte blocks
Divide the address 0x34567 into tag, index, offset for each cache.

65

T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)

block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

66

T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6

blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

66

T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

66

T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

66

T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

66

T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

66

T-I-O results
L1 L2 L3

sets 64 1024 8192
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

67

T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

68

T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

68

T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L1:
bits 6-11 (L1 set): 01 0101 = 0x15
bits 12- (L1 tag): 0x34

68

T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L1:
bits 6-11 (L1 set): 01 0101 = 0x15
bits 12- (L1 tag): 0x34

68

T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L2:
bits 6-15 (set for L2): 01 0001 0101 = 0x115
bits 16-: 0x3

68

T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L2:
bits 6-15 (set for L2): 01 0001 0101 = 0x115
bits 16-: 0x3

68

T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L3:
bits 6-18 (set for L3): 0 1101 0001 0101 = 0xD15
bits 18-: 0x0

68

cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

69

cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

69

cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

69

backup slides — cache performance

70

cache miss types
common to categorize misses:

roughly “cause” of miss assuming cache block size fixed

compulsory (or cold) — first time accessing something
adding more sets or blocks/set wouldn’t change

conflict — sets aren’t big/flexible enough
a fully-associtive (1-set) cache of the same size would have done better

capacity — cache was not big enough
coherence — from sync’ing cache with other caches

only issue with multiple cores
71

making any cache look bad
1. access enough blocks, to fill the cache

2. access an additional block, replacing something

3. access last block replaced

4. access last block replaced

5. access last block replaced

…

but — typical real programs have locality
72

cache optimizations
(assuming typical locality + keeping cache size constant if possible…)

miss rate hit time miss penalty
increase cache size better worse —
increase associativity better worse worse?
increase block size depends worse worse
add secondary cache — — better
write-allocate better — ?
writeback — — ?
LRU replacement better ? worse?
prefetching better — —
prefetching = guess what program will use, access in advance

average time = hit time + miss rate × miss penalty
73

cache optimizations by miss type
(assuming other listed parameters remain constant)

capacity conflict compulsory
increase cache size fewer misses fewer misses —
increase associativity — fewer misses —
increase block size more misses? more misses? fewer misses

LRU replacement — fewer misses —
prefetching — — fewer misses

74

average memory access time
AMAT = hit time + miss penalty × miss rate

or AMAT = hit time × hit rate + miss time × miss rate

effective speed of memory

75

AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?

5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?

to miss rate of 2/30 → to approx 93% hit rate

76

AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?

to miss rate of 2/30 → to approx 93% hit rate

76

AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?
to miss rate of 2/30 → to approx 93% hit rate

76

exercise: AMAT and multi-level caches
suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time
assume when there’s an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 10+3 cycles

what is the average memory access time for the L1 cache?

3 + 0.1 · (10 + 0.2 · 100) = 6 cycles
L1 miss penalty is 10 + 0.2 · 100 = 30 cycles

77

exercise: AMAT and multi-level caches
suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time
assume when there’s an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 10+3 cycles

what is the average memory access time for the L1 cache?
3 + 0.1 · (10 + 0.2 · 100) = 6 cycles

L1 miss penalty is 10 + 0.2 · 100 = 30 cycles

77

exercise: AMAT and multi-level caches
suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time
assume when there’s an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 10+3 cycles

what is the average memory access time for the L1 cache?
3 + 0.1 · (10 + 0.2 · 100) = 6 cycles
L1 miss penalty is 10 + 0.2 · 100 = 30 cycles

77

approximate miss analysis
very tedious to precisely count cache misses

even more tedious when we take advanced cache optimizations into
account

instead, approximations:
good or bad temporal/spatial locality

good temporal locality: value stays in cache
good spatial locality: use all parts of cache block

with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once
(that is, once each time the inner loop is run)
…if they can all fit in the cache

78

approximate miss analysis
very tedious to precisely count cache misses

even more tedious when we take advanced cache optimizations into
account

instead, approximations:
good or bad temporal/spatial locality

good temporal locality: value stays in cache
good spatial locality: use all parts of cache block

with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once
(that is, once each time the inner loop is run)
…if they can all fit in the cache

78

locality exercise (1)
/* version 1 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 2 */
for (int j = 0; j < N; ++j)

for (int i = 0; i < N; ++i)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?

79

exercise: miss estimating (1)
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

Assume: 4 array elements per block, N very large, nothing in cache
at beginning.

Example: N/4 estimated misses for A accesses:
A[i] should always be hit on all but first iteration of inner-most loop.
first iter: A[i] should be hit about 3/4s of the time (same block as A[i-1]
that often)

Exericse: estimate # of misses for B, C

80

a note on matrix storage
A — N × N matrix

represent as array

makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat = malloc(N * N);

A_flat[i * N + j] === A_2d_array[i][j]

81

convertion re: rows/columns
going to call the first index rows

Ai,j is A row i, column j

rows are stored together

this is an arbitrary choice

82

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

83

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

83

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

83

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

83

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

83

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i * N + j] += A[i * N + k] * B[k * N + j];

84

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j]; 85

loop orders and locality
loop body: Cij+ = AikBkj

kij order: Cij, Bkj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Cij has temporal locality

86

loop orders and locality
loop body: Cij+ = AikBkj

kij order: Cij, Bkj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Cij has temporal locality

86

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j]; 87

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j]; 87

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j]; 87

which is better?

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

exercise: Which version has better spatial/temporal locality for…
…accesses to C? …accesses to A? …accesses to B?

88

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

89

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

89

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

89

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

89

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

89

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

90

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

90

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

90

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

90

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

90

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j]; 91

performance (with A=B)

0 100 200 300 400 500
N

0.0
0.2
0.4
0.6
0.8
1.0
1.2 billions of instructions

k inner
k outer

0 100 200 300 400 500
N

0.0

0.2

0.4

0.6

0.8

1.0 billions of cycles
k inner
k outer

92

alternate view 1: cycles/instruction

0 100 200 300 400 500
N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 cycles/instruction

93

alternate view 2: cycles/operation

0 100 200 300 400 500
N

1.0

1.5

2.0

2.5

3.0

3.5 cycles/multiply or add

94

counting misses: version 1
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i * N + j] += A[i * N + k] * B[k * N + j];

if N really large
assumption: can’t get close to storing N values in cache at once

for A: about N ÷ block size misses per k-loop
total misses: N3 ÷ block size

for B: about N misses per k-loop
total misses: N3

for C: about 1 ÷ block size miss per k-loop
total misses: N2 ÷ block size

95

counting misses: version 2
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i * N + j] += A[i * N + k] * B[k * N + j];

for A: about 1 misses per j-loop
total misses: N2

for B: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

for C: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

96

exercise: miss estimating (2)
for (int k = 0; k < 1000; k += 1)

for (int i = 0; i < 1000; i += 1)
for (int j = 0; j < 1000; j += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block

assuming: cache not close to big enough to hold 1K elements

estimate: approximately how many misses for A, B?

97

L1 misses (with A=B)

0 100 200 300 400 500
N

0

20

40

60

80

100

120

140 read misses/1K instructions
k inner
k outer

98

L1 miss detail (1)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

read misses/1K instruction

99

L1 miss detail (2)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

N = 93; 93 * 11 210

N = 114; 114 * 9 210

N = 27

read misses/1K instruction

100

addresses
B[k*114+j] is at 10 0000 0000 0100
B[k*114+j+1] is at 10 0000 0000 1000
B[(k+1)*114+j] is at 10 0011 1001 0100
B[(k+2)*114+j] is at 10 0101 0101 1100
…
B[(k+9)*114+j] is at 11 0000 0000 1100

test system L1 cache: 6 index bits, 6 block offset bits

101

addresses
B[k*114+j] is at 10 0000 0000 0100
B[k*114+j+1] is at 10 0000 0000 1000
B[(k+1)*114+j] is at 10 0011 1001 0100
B[(k+2)*114+j] is at 10 0101 0101 1100
…
B[(k+9)*114+j] is at 11 0000 0000 1100

test system L1 cache: 6 index bits, 6 block offset bits

101

conflict misses
powers of two — lower order bits unchanged
B[k*93+j] and B[(k+11)*93+j]:

1023 elements apart (4092 bytes; 63.9 cache blocks)

64 sets in L1 cache: usually maps to same set

B[k*93+(j+1)] will not be cached (next i loop)

even if in same block as B[k*93+j]

how to fix? improve spatial locality
(maybe even if it requires copying)

102

locality exercise (2)
/* version 2 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 3 */
for (int ii = 0; ii < N; ii += 32)

for (int jj = 0; jj < N; jj += 32)
for (int i = ii; i < ii + 32; ++i)

for (int j = jj; j < jj + 32; ++j)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?

103

a transformation
for (int k = 0; k < N; k += 1)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

104

a transformation
for (int k = 0; k < N; k += 1)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

104

simple blocking
for (int kk = 0; kk < N; kk += 2)

/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

105

simple blocking
for (int kk = 0; kk < N; kk += 2)

/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

105

simple blocking
for (int kk = 0; kk < N; kk += 2)

/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

105

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

106

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

Temporal locality in Cijs

106

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

More spatial locality in Aik

106

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

Still have good spatial locality in Bkj, Cij

106

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…

…
107

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…

107

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…

107

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…

…

likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one

A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

108

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…
likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one

A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

108

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…
likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one

A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

108

counting misses for B (1)
for (int kk = 0; kk < N; kk += 2)

for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…

109

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…

likely cache misses: any access, each time
how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

110

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

110

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time
how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

110

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time
how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses
110

simple blocking – counting misses
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

N

2
· N j-loop executions and (assuming N large):

about 1 misses from A per j-loop
N2/2 total misses (before blocking: N2)

about 2N ÷ block size misses from B per j-loop
N3 ÷ block size total misses (same as before blocking)

about N ÷ block size misses from C per j-loop
N3 ÷ (2 · block size) total misses (before: N3 ÷ block size) 111

simple blocking – counting misses
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

N

2
· N j-loop executions and (assuming N large):

about 1 misses from A per j-loop
N2/2 total misses (before blocking: N2)

about 2N ÷ block size misses from B per j-loop
N3 ÷ block size total misses (same as before blocking)

about N ÷ block size misses from C per j-loop
N3 ÷ (2 · block size) total misses (before: N3 ÷ block size) 111

improvement in read misses

0 100 200 300 400 500 600
N

0

5

10

15

20read misses/1K instructions of unblocked

blocked (kk+=2)
unblocked

112

simple blocking (2)
same thing for i in addition to k?
for (int kk = 0; kk < N; kk += 2) {

for (int ii = 0; ii < N; ii += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < ii + 2; ++i)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}
}

}

113

simple blocking — locality
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

}
}

now: more temporal locality in B
previously: access Bkj, then don’t use it again for a long time

114

simple blocking — locality
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

}
}

now: more temporal locality in B
previously: access Bkj, then don’t use it again for a long time

114

simple blocking — counting misses for A
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 misses per loop with A (2 cache blocks)
total misses: N2

2 (same as only blocking in K)
115

simple blocking — counting misses for B
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 ÷ block size misses per iteration with B

total misses: N3

2 · block size (before: N3

block size) 116

simple blocking — counting misses for C
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2
block size misses per iteration with C

total misses: N3

2 · block size (same as blocking only in K) 117

simple blocking — counting misses (total)
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

before:
A: N2

2
; B: N3

1 · block size; C
N3

1 · block size
after:
A: N2

2
; B: N3

2 · block size; C
N3

2 · block size 118

generalizing: divide and conquer
partial_matrixmultiply(float *A, float *B, float *C

int startI, int endI, ...) {
for (int i = startI; i < endI; ++i) {

for (int j = startJ; j < endJ; ++j) {
for (int k = startK; k < endK; ++k) {

...
}
matrix_multiply(float *A, float *B, float *C, int N) {

for (int ii = 0; ii < N; ii += BLOCK_I)
for (int jj = 0; jj < N; jj += BLOCK_J)
for (int kk = 0; kk < N; kk += BLOCK_K)

...
/* do everything for segment of A, B, C

that fits in cache! */
partial_matmul(A, B, C,

ii, ii + BLOCK_I, jj, jj + BLOCK_J,
kk, kk + BLOCK_K)

}

119

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

120

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

120

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

120

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

120

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj

120

cache blocking efficiency
for each of N3/IJK matrix blocks:
load I × K elements of Aik:

≈ IK ÷ block size misses per matrix block
≈ N3/(J · blocksize) misses total

load K × J elements of Bkj:
≈ N3/(I · blocksize) misses total

load I × J elements of Cij:
≈ N3/(K · blocksize) misses total

bigger blocks — more work per load!
catch: IK + KJ + IJ elements must fit in cache

otherwise estimates above don’t work 121

cache blocking rule of thumb
fill the most of the cache with useful data

and do as much work as possible from that

example: my desktop 32KB L1 cache

I = J = K = 48 uses 482 × 3 elements, or 27KB.

assumption: conflict misses aren’t important

122

systematic approach
for (int k = 0; k < N; ++k) {

for (int i = 0; i < N; ++i) {
Aik loaded once in this loop:
for (int j = 0; j < N; ++j)

Cij, Bkj loaded each iteration (if N big):
B[i*N+j] += A[i*N+k] * A[k*N+j];

values from Aik used N times per load

values from Bkj used 1 times per load
but good spatial locality, so cache block of Bkj together

values from Cij used 1 times per load
but good spatial locality, so cache block of Cij together

123

exercise: miss estimating (3)
for (int kk = 0; kk < 1000; kk += 10)

for (int jj = 0; jj < 1000; jj += 10)
for (int i = 0; i < 1000; i += 1)

for (int j = jj; j < jj+10; j += 1)
for (int k = kk; k < kk + 10; k += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1K elements, but
big enough to hold 500 or so

estimate: approximately how many misses for A, B?

hint 1: part of A, B loaded in two inner-most loops only needs to
be loaded once
hint 2: part of A can be reused between iterations of i loop

124

loop ordering compromises
loop ordering forces compromises:
for k: for i: for j: c[i,j] += a[i,k] * b[j,k]

perfect temporal locality in a[i,k]
bad temporal locality for c[i,j], b[j,k]
perfect spatial locality in c[i,j]
bad spatial locality in b[j,k], a[i,k]

cache blocking: work on blocks rather than rows/columns
have some temporal, spatial locality in everything

125

loop ordering compromises
loop ordering forces compromises:
for k: for i: for j: c[i,j] += a[i,k] * b[j,k]

perfect temporal locality in a[i,k]
bad temporal locality for c[i,j], b[j,k]
perfect spatial locality in c[i,j]
bad spatial locality in b[j,k], a[i,k]

cache blocking: work on blocks rather than rows/columns
have some temporal, spatial locality in everything

125

cache blocking pattern
no perfect loop order? work on rectangular matrix blocks

size amount used in inner loops based on cache size

in practice:
test performance to determine ‘size’ of blocks

126

backup slides

127

cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 129

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 129

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

exercise (1)
initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

130

exercise (2)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

131

exercise (3)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of conflict misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

132

prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?

133

prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?

133

common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

134

common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses

134

prefetching idea
look for sequential accesses

bring in guess at next-to-be-accessed value

if right: no cache miss (even if never accessed before)

if wrong: possibly evicted something else — could cause more
misses

fortunately, sequential access guesses almost always right

135

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

136

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

137

simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)

138

simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)

138

more than 3?
can we just keep doing this increase from 3 to some large X? …

assumption: X values from A would stay in cache
X too large — cache not big enough

assumption: X blocks from B would help with spatial locality
X too large — evicted from cache before next iteration

139

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

140

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

140

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

140

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

140

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

140

keeping values in cache
can’t explicitly ensure values are kept in cache

…but reusing values effectively does this
cache will try to keep recently used values

cache optimization ideas: choose what’s in the cache
for thinking about it: load values explicitly
for implementing it: access only values we want loaded

141

TLB and the MMU (1)

MMU
(‘page table walk’ logic)

L1 Cache/Memory

TLB

address
from

program

142

TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

143

TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

143

TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

143

TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happens

TLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

143

TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happens

TLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

143

TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs

143

changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit

144

changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit

144

changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit

144

editing page tables
what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

invalid to valid — nothing needed
TLB doesn’t contain invalid entries
MMU will check memory again

valid to invalid — OS needs to tell processor to invalidate it
special instruction (x86: invlpg)

valid to other valid — OS needs to tell processor to invalidate it

145

editing page tables
what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

invalid to valid — nothing needed
TLB doesn’t contain invalid entries
MMU will check memory again

valid to invalid — OS needs to tell processor to invalidate it
special instruction (x86: invlpg)

valid to other valid — OS needs to tell processor to invalidate it

145

address splitting for TLBs (1)
my desktop:

4KB (212 byte) pages; 48-bit virtual address

64-entry, 4-way L1 data TLB

TLB index bits?

64/4 = 16 sets — 4 bits

TLB tag bits?

48 − 12 = 36 bit virtual page number — 36 − 4 = 32 bit TLB tag

146

address splitting for TLBs (1)
my desktop:

4KB (212 byte) pages; 48-bit virtual address

64-entry, 4-way L1 data TLB

TLB index bits?
64/4 = 16 sets — 4 bits

TLB tag bits?
48 − 12 = 36 bit virtual page number — 36 − 4 = 32 bit TLB tag

146

address splitting for TLBs (2)
my desktop:

4KB (212 byte) pages; 48-bit virtual address

1536-entry (3 · 29), 12-way L2 TLB

TLB index bits?

1536/12 = 128 sets — 7 bits

TLB tag bits?

48 − 12 = 36 bit virtual page number — 36 − 7 = 29 bit TLB tag

147

address splitting for TLBs (2)
my desktop:

4KB (212 byte) pages; 48-bit virtual address

1536-entry (3 · 29), 12-way L2 TLB

TLB index bits?
1536/12 = 128 sets — 7 bits

TLB tag bits?
48 − 12 = 36 bit virtual page number — 36 − 7 = 29 bit TLB tag

147

changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit

148

changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit

148

changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit

148

editing page tables
what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

invalid to valid — nothing needed
TLB doesn’t contain invalid entries
MMU will check memory again

valid to invalid — OS needs to tell processor to invalidate it
special instruction (x86: invlpg)

valid to other valid — OS needs to tell processor to invalidate it

149

editing page tables
what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

invalid to valid — nothing needed
TLB doesn’t contain invalid entries
MMU will check memory again

valid to invalid — OS needs to tell processor to invalidate it
special instruction (x86: invlpg)

valid to other valid — OS needs to tell processor to invalidate it

149

	caching
	simulating a direct mapped cache
	exercise: direct-mapped cache access
	mapping misses to sets (DM)
	cache misses on real code

	adding associativity
	diagram
	options for replacement
	associativity terms
	tag/index/offset for set-assoc. caches

	misses in C, and intuition behind conflicts
	array misses warmup

	backup slides — general
	inclusive v exclusive
	tag/index/offset formulas
	cut example?
	benchmarking and cache results

	varying parameters exercise
	misc cache optimizations: prefetching
	an old quiz question
	array misses exercises
	sparse array miss exericse

	alternate cache miss exericse
	array misses and cache results (old sparse)
	set mapping (text)
	more complex array miss example
	tag/index/offset exercise
	setup
	the exercise

	circuit diagram
	backup slides — cache performance
	miss types
	cache tradeoffs
	AMAT
	exercise: AMAT (simple case)
	exercise: multi-level cache AMAT

	less precise approxmation
	warmup: locality exercise
	warmup: miss counting
	2D arrays in C
	matrix multiply and loop orders
	exercise: which order?
	locality: diagrams
	MM performance
	miss counting
	miss count exericse
	jagged edges: conflict misses

	warmup, take two: locality exercise
	cache blocking introduction
	transformation — 1D blocking
	two-at-a-time
	generalizing
	diagram of general

	counting loads
	exercise
	cache blocking review

	more backup slides
	cut example?
	benchmarking and cache results
	varying parameters exercise
	misc cache optimizations: prefetching
	addt'l order usage diagrams
	cache blocking: more than two at a time?
	explicit counting
	how TLBs fit in the pipeline
	aside: TLB invalidation
	exercise: splitting for TLBs
	1
	2

	TLBs and context switches

