changelog

17 March 2024: upload full slides (including exercise-related diagrams)

last time

simulating direct-mapped caches
find tag/index/offset split lookup index
K-way set-associative caches
same tag/index/offset split
K direct-mapped caches "stapled together" 'sets' (rows) with multiple blocks
started mapping C accesses to caches alignment: don't want single values to split blocks example 4-byte int at multiple of 4 address but doesn't mean, e.g., array starts at beginning of block

reminder re: pagetable2

due next Wednesday before first lab
normal late policy does not apply
late submissions not normally accepted
also, you probably want to start pagetable3 extra parts early (rather than trying to do it in 2-3 days)

quiz Q1

A reverse order:
still good spatial locality (accesses close to each other)
just as good temporal locality (repeat accesses, right after each other)(
B singly-linked list:
more spread out (worse spatial locality)
more things to access (worse temporal locality)
C single loop:
better temporal locality
D halving N :
better temporal locality

quiz Q2

$0 \times 401=10000000001$
$0 \times 542=10101000010$

4 offset bits
need to have at least 3 index bits for first different bit to be included

3 index bits would be 8 sets
(more index bits would be more sets)

quiz Q5

16 bytes fits 4 4-byte integers
array spans 8192/4 = 2048 cache blocks
each cache block needs to be accessed twice

quiz Q6

array at 0×1000000
16 byte blocks $\rightarrow 4$ ints per block
array $[0-3]$: set 0
array[4-7]: set 1
array[100-103]: set 25
array[1020-1023]: set 255
array[1024-1027]: set 0
array[1028-1031]: set 1
array[1120-1123]: set 25

C and cache misses (warmup 1)

int array[4];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 1-set direct-mapped cache with 8B blocks?

some possiblities

Q1: how do cache blocks correspond to array elements? not enough information provided!

some possiblities

if array[0] starts at beginning of a cache block... array split across two cache blocks

memory access	cache contents afterwards
	(empty)
read array [0] (miss)	\{array[0], array[1]\}
read array[1] (hit)	\{array[0], array[1]\}
read array[2] (miss)	\{array[2], array[3]\}
read array [3] (hit)	\{array[2], array[3]\}

some possiblities

one cache block

if array[0] starts right in the middle of a cache block array split across three cache blocks

memory access	cache contents afterwards
-	(empty)
read array [0] (miss)	$\{\star \star \star \star, \operatorname{array}[0]\}$
read array [1] (miss)	$\{\operatorname{array}[1], \operatorname{array}[2]\}$
read array [2] (hit)	$\{\operatorname{array[1],\operatorname {array}[2]\} }$
read array [3] (miss)	$\{\operatorname{array}[3],++++\}$

some possiblities

if array[0] starts at an odd place in a cache block, need to read two cache blocks to get most array elements

memory access	cache contents afterwards
	(empty)
read array [0] byte 0 (miss)	$\left\{{ }^{* * * *}\right.$, array[0] byte 0 \}
read array [0] byte 1-3 (miss)	$\{$ array[0] byte 1-3, array[2], array[3] byte 0 \}
read array[1] (hit)	$\{$ array[0] byte 1-3, array[2], array[3] byte 0 \}
read array[2] byte 0 (hit)	$\{$ array[0] byte 1-3, array[2], array[3] byte 0 \}
read array [2] byte 1-3 (miss)	\{part of array[2], array[3], ++++\}
read array[3] (hit)	\{part of array[2], array[3], ++++\}

aside: alignment

compilers and malloc/new implementations usually try align values align $=$ make address be multiple of something
most important reason: don't cross cache block boundaries

C and cache misses (warmup 2)

```
int array[4];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
odd_sum += array[1];
odd_sum += array[3];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

Assume array[0] at beginning of cache block.
How many data cache misses on a 1-set direct-mapped cache with 8B blocks?

exercise solution

one cache block

```
array[0] array[1] array[2] array[3]
```

memory access	cache contents afterwards
-	(empty)
read array [0] (miss)	$\{\operatorname{array[0],} \operatorname{array[1]\} }$
read array [2] (miss)	$\{\operatorname{array[2],} \operatorname{array[3]\} }$
read array [1] (miss)	$\{\operatorname{array[0],~array[1]\} }$
read array[3] (miss)	$\{\operatorname{array[2],~array[3]\} }$

C and cache misses (warmup 3)

```
int array[8];
.••
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
even_sum += array[4];
odd_sum += array[5];
even_sum += array[6];
odd_sum += array[7];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny), and array[0] at beginning of cache block.

How many data cache misses on a 2-set direct-mapped cache with 8B blocks?

exercise solution

one cache block

exercise solution

one cache block one cache block one cache block one cache block

exercise solution

one cache block one cache block one cache block one cache block

	(index 1) (index 0)		(index 1)		(index 0)		
...		array [0] array[1]	array [2]	array [3]	array [4]	array [5]	arra
memory access		set 0 afterwards		set 1 afterwards			
-		(empty)		(empty)			
read array [0] (miss)		\{array[0], array[1]\}		(empty)			
read array [1] (hit)		\{array[0], array[1]\}		(empty)			
read array[2] (miss)		\{array[0], array[1]\}		\{array[2], array[3]\}			
read array [3] (hit)		\{array[0], array[1]\}		\{array[2], array[3]\}			
read array [4] (miss)		\{array [4], array [5] \}		\{array[2], array[3]\}			
	read array [5] (hit)	\{array [4], array[5]\}		\{array[2], array[3]\}			
	read array [6] (miss)	\{array[4], array[5]\}		\{array[6], array[7]\}			
	read array [7] (hit)	\{array[4], array[5]\}		\{array[6], array[7]\}			

exercise solution

one cache block one cache block one cache block one cache block observation: what happens in set 0 doesn't affect set 1 when evaluating set 0 accesses, can ignore non-set 0 accesses/content

memory adeos	Sel 0 atcerwarus	SEL 1 arterwarus
-	(empty)	(empty)
read array [0] (miss)	$\{\operatorname{array}[0], \operatorname{array}[1]\}$	(empty)
read array[1] (hit)	$\{\operatorname{array}[0], \operatorname{array}[1]\}$	(empty)
read array[2] (miss)	$\{\operatorname{array}[0], \operatorname{array}[1]\}$	\{array[2], array [3]
read array[3] (hit)	$\{\operatorname{array}[0], \operatorname{array}[1]\}$	\{array [2], array [3]
read array[4] (miss)	$\{\operatorname{array[4],~array[5]\} }$	\{array[2], array [3]
read array [5] (hit)	$\{\operatorname{array}[4], \operatorname{array}[5]\}$	\{array[2], array [3]
read array [6] (miss)	\{array[4], array [5]	\{array [6], array [7]
read array[7] (hit)	$\{\operatorname{array[4],~array~[5]~}$	\{array [6], array [7]

exercise solution

read array [4] (miss)	$\{\operatorname{array[4],} \operatorname{array[5]\} }$
read array [5] (hit)	$\{\operatorname{array}[4], \operatorname{array}[5]\}$

exercise solution

read array [4] (miss)	$\{\operatorname{array[4],} \operatorname{array[5]\} }$
read array [5] (hit)	$\{\operatorname{array}[4], \operatorname{array}[5]\}$

exercise solution

one cache block one cache block one cache block one cache block

read array[2] (miss)
read array[3] (hit)

read array [6] (miss)

$\{\operatorname{array}[6], \operatorname{array}[7]\}$
$\{\operatorname{array}[6], \operatorname{array}[7]\}$

C and cache misses (warmup 4a)

```
int array[8]; /* assume aligned */
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
even_sum += array[4];
even_sum += array[6];
odd_sum += array[1];
odd_sum += array[3];
odd_sum += array[5];
odd_sum += array[7];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2-set direct-mapped cache with 8B blocks?

exercise solution

one cache block one cache block one cache block one cache block (index 1)
(index 0)
(index 1)
(index 0)

		array[0] array[1]	array[2]	array [3]	array [4]	array [5]	arra
memory access		set 0 afterwards		set 1 afterwards			
	-	(empty)		(empty)			
	read array[0] (miss)	\{array[0], array[1]\}		(empty)			
	read array[2] (miss)	\{array [0], array[1]		\{array[2], array[3]\}			
	read array[4] (miss)	\{array [4], array [5] \}		\{array [2], array [3] \}			
	read array[6] (miss)	\{array [4], array [5] \}		\{array [6], array [7] \}			
	read array[1] (miss)	\{array [0], array [1] \}		\{array [6], array [7] \}			
	read array[3] (miss)	\{array[0], array[1]\}		\{array[2], array[3]\}			
	read array[5] (miss)	\{array [4], array [5] \}		\{array[2], array [3]			
	read array[7] (miss)	\{array [4], array [5] \}		\{array[6], array[7]\}			

exercise solution

one cache block one cache block one cache block one cache block (index 1) (index 0) (index 1) (index 0)

read array [4] (miss)	$\{\operatorname{array}[4], \operatorname{array}[5]\}$
read array [1] (miss)	$\{\operatorname{array}[4], \operatorname{array}[5]\}, \operatorname{array}[1]\}$
read array [3] (miss)	$\{\operatorname{array}[0], \operatorname{array}[1]\}$

exercise solution

one cache block one cache block one cache block one cache block (index 1) (index 0) (index 1)

read array [2] (miss)	$\{\operatorname{array~[0],~array~[1]~}$	\{array[2], array[3]\}
read array [6] (miss)	$\{\operatorname{array~[4],~array~[5]\} ~}$	\{array[6], array[7]\}
read array[1] (miss)		\{array[6], array[7]
read array [3] (miss)	\{array [0], array [1]	\{array[2], array[3]\}
read array [7] (miss)	$\{\operatorname{array~[4],~array~[5]\} ~}$	\{array[6], array[7]\}

C and cache misses (warmup 4b)

```
int array[8]; /* assume aligned */
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[3];
even_sum += array[6];
odd_sum += array[1];
even_sum += array[4];
odd_sum += array[7];
even_sum += array[2];
odd_sum += array[5];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2-set direct-mapped cache with 8B blocks?

C and cache misses (warmup 5)

```
int array[1024]; /* assume aligned */ int even = 0, odd = 0;
even += array[0];
even += array[2];
even += array[512];
even += array[514];
odd += array[1];
odd += array[3];
odd += array[511];
odd += array[513];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).
observation: array[0] and array[512] exactly 2 KB apart
How many data cache misses on a 2 KB direct mapped cache with 16B blocks?

C and cache misses (warmup 6)

```
int array[1024]; /* assume aligned */ int even = 0, odd = 0;
even += array[0];
even += array[2];
even += array[500];
even += array[502];
odd += array[1];
odd += array[3];
odd += array[501];
odd += array[503];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).
How many data cache misses on a 2 KB direct mapped cache with 16B blocks?

misses with skipping

int array1[512]; int array2[512];
for (int $\mathbf{i}=0 ; i<512 ; i+=1)$

$$
\text { sum }+=\operatorname{array} 1[i] * \operatorname{array} 2[i] ;
$$

\}
Assume everything but array1, array2 is kept in registers (and the compiler does not do anything funny).

About how many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?
Hint: depends on relative placement of array1, array2

best/worst case

array1[i] and array2 [i] always different sets:
$=$ distance from array 1 to array 2 not multiple of $\#$ sets \times bytes $/$ set
2 misses every $4 i$
blocks of 4 array $1[X]$ values loaded, then used 4 times before loading next block
(and same for array2[X])
array1[i] and array2 [i] same sets:
$=$ distance from array 1 to array 2 is multiple of \# sets \times bytes/set 2 misses every i
block of 4 array $1[X]$ values loaded, one value used from it, then, block of 4 array $2[X]$ values replaces it, one value used from it, ...

worst case in practice?

two rows of matrix?
often sizeof(row) bytes apart
if the row size is multiple of number of sets \times bytes per block, oops!

mapping of sets to memory (3-way)

memory

mapping of sets to memory (3-way)

memory

mapping of sets to memory (3-way)

memory

mapping of sets to memory (3-way)

misses with skipping

int array1[512]; int array2[512];
for (int i $=0 ; \mathbf{i}<512 ;$ i += 1)
sum += array1[i] * array2[i];
\}
Assume everything but array1, array2 is kept in registers (and the compiler does not do anything funny).

About how many data cache misses on a 2KB direct-mapped cache with 16B cache blocks?
Hint: depends on relative placement of array1, array2
How about on a two-way set associative cache?

C and cache misses (assoc)

```
int array[1024]; /* assume aligned */
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
even_sum += array[512];
even_sum += array[514];
odd_sum += array[1];
odd_sum += array[3];
odd_sum += array[511];
odd_sum += array[513];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).
opbservation: array[0], array[256], array[512], array [768] in same set
How many data cache misses on a 2 KB 2-way set associative cache with 16B blocks

C and cache misses (assoc)

```
int array[1024]; /* assume aligned */
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[256];
even_sum += array[512];
even_sum += array[768];
odd_sum += array[1];
odd_sum += array[257];
odd_sum += array[513];
odd_sum += array[769];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).
observation: array[0], array[256], array[512], array[768] in same set
How many data cache misses on a 2 KB 2 -way set associative cache with 16B blocks?

simulated misses: BST lookups

simulated misses: matrix multiplies

data cache misses for NxN matrix multiply

handling writes

what about writing to the cache?
two decision points:
if the value is not in cache, do we add it? if yes: need to load rest of block - write-allocate if no: missing out on locality? write-no-allocate
if value is in cache, when do we update next level?
if immediately: extra writing write-through if later: need to remember to do so write-back

allocate on write?

processor writes less than whole cache block
block not yet in cache
two options:

write-allocate

fetch rest of cache block, replace written part (then follow write-through or write-back policy)
write-no-allocate
don't use cache at all (send write to memory instead) guess: not read soon?

allocate on write?

processor writes less than whole cache block
block not yet in cache
two options:
write-allocate
fetch rest of cache block, replace written part
(then follow write-through or write-back policy)
write-no-allocate
don't use cache at all (send write to memory instead) guess: not read soon?

write-allocate v. write-no-allocate

option 1: write-allocate

RAM

write-allocate v. write-no-allocate

option 1: write-allocate

RAM

write-allocate v. write-no-allocate

(1) write 10

write-allocate v. write-no-allocate

option 2: write-no-allocate

RAM

write-allocate v. write-no-allocate

option 2: write-no-allocate

write-through v. write-back

option 1: write-through

(1) write 10

write-through v. write-back

option 1: write-through

write-through v. write-back

option 2: write-back

write-through v. write-back

option 2: write-back

write-through v. write-back

writeback policy

changed value!

2-way set associative, 4 byte blocks, 2 sets

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	mem [0x00] mem [0x01]	0	1	011000	mem [0x60] * $\operatorname{mem}[0 \times 61] \star$	1	1
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	0	\bigcirc				0
			1 = dirty (different than memory) needs to be written if evicted						

write-allocate + write-back

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	mem[0x00] mem [0x01]	0	1	011000	mem [0x60] \times mem [0x61] ^	* 1	1
1	1	011000	$\begin{array}{\|c\|} \hline \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}$	\bigcirc	0				\bigcirc

writing 0xFF into address 0×04 ?
index 0, tag 000001

write-allocate + write-back

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\begin{aligned} & \operatorname{mem}[0 \times 00] \\ & \operatorname{mem}[0 \times 01] \end{aligned}$	0	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 60] \star \star \\ & \operatorname{mem}[0 x 61] \star \end{aligned}$	* 1	1
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	\bigcirc	0				\bigcirc

writing 0xFF into address 0×04 ?
index 0 , tag 000001
step 1: find least recently used block

write-allocate + write-back

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\begin{aligned} & \operatorname{mem}[0 \times 00] \\ & \operatorname{mem}[0 \times 01] \end{aligned}$	0	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 60] \star \star \\ & \operatorname{mem}[0 x 61] \star \end{aligned}$	* $\begin{array}{r} \\ \text { * }\end{array}$	1
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	\bigcirc	0				\bigcirc

writing 0xFF into address 0×04 ?
index 0 , tag 000001
step 1: find least recently used block
step 2: possibly writeback old block

write-allocate + write-back

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 00] \\ & \operatorname{mem}[0 \times 01] \end{aligned}\right.$	0	1	000001	$\begin{array}{c\|} \hline 0 \times F F \\ \operatorname{mem}[0 \times 05] \end{array}$	1	\bigcirc
1	1	011000	$\begin{array}{\|c\|} \hline \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}$	0	0				\bigcirc

writing $0 \times \mathrm{xFF}$ into address 0×04 ?
index 0 , tag 000001
step 1: find least recently used block
step 2: possibly writeback old block
step 3a: read in new block - to get mem[0x05]
step 3b: update LRU information

write-no-allocate + write-back

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 00] \\ & \operatorname{mem}[0 \times 01] \end{aligned}\right.$	0	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 60] \star \star \\ & \operatorname{mem}[0 \times 61] \end{aligned}$	* 1	1
1	1	011000	$\begin{array}{\|c\|} \hline \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}$	0	0				0

writing $0 \times \mathrm{XFF}$ into address 0×04 ?
step 1: is it in cache yet?
step 2: no, just send it to memory

exercise (1)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	001100	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 30] \\ & \operatorname{mem}[0 \times 31] \end{aligned}\right.$	0	1	010000	$\begin{aligned} & \operatorname{mem}[0 \times 40] \star \star \\ & \operatorname{mem}[0 \times 41] \end{aligned}$	* 1	0
1	1	011000	$\left\|\begin{array}{c} \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}\right\|$	0	1	001100	$\operatorname{mem}[0 \times 32] \star_{\operatorname{mem}[0 \times 33]}^{*}$	1	1

for each of the following accesses, performed alone, would it require (a) reading a value from memory (or next level of cache) and (b) writing a value to the memory (or next level of cache)? writing 1 byte to 0×33
reading 1 byte from 0×52
reading 1 byte from 0×50

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	001100	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \\ \hline \end{array}$	0	1	010000	$\begin{aligned} & \operatorname{mem}[0 \times 40] \star \\ & \operatorname{mem}[0 \times 41] \star \end{aligned}$	1	\bigcirc
1	1	011000	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}$	\bigcirc	1	001100	$\begin{aligned} & \operatorname{mem}[0 \times 32] \star \\ & \operatorname{mem}[0 \times 33] \star \end{aligned}$	1	1

writing 1 byte to 0×33 : (set 1 , offset 1) no read or write reading 1 byte from 0×52 :
reading 1 byte from 0×50 :

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	001100	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \end{array}$	\bigcirc	1	010000	$\begin{aligned} & \begin{array}{l} \operatorname{mem}[0 \times 40] * \\ \operatorname{mem}[0 \times 41] * \end{array} \end{aligned}$	1	0
1	1	011000	$\left\|\begin{array}{c} \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}\right\|$	\bigcirc	1	001100		1	10

writing 1 byte to 0×33 : (set 1 , offset 1) no read or write reading 1 byte from 0×52 :
reading 1 byte from 0×50 :

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	001100	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \\ \hline \end{array}$	0	1	010000	$\begin{aligned} & \operatorname{mem}[0 \times 40] \star \\ & \operatorname{mem}[0 \times 41] \star \end{aligned}$	1	\bigcirc
1	1	011000	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}$	\bigcirc	1	001100	$\begin{aligned} & \operatorname{mem}[0 \times 32] \star \\ & \operatorname{mem}[0 \times 33] \star \end{aligned}$	1	1

writing 1 byte to 0×33 : (set 1 , offset 1) no read or write reading 1 byte from 0×52 : (set 1 , offset 0) write back $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 :

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
\bigcirc	1	001100	$\left\|\begin{array}{c} \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \end{array}\right\|$	0	1	010000	mem [0x40]* mem [0×41] *	1	0
1	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}\right.$	0	1	101000	$\begin{aligned} & \operatorname{mem}[0 \times 52] \\ & \operatorname{mem}[0 \times 53] \end{aligned}$	10	10

writing 1 byte to 0×33 : (set 1 , offset 1) no read or write reading 1 byte from 0×52 : (set 1 , offset 0) write back $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 :

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	001100	$\begin{aligned} & \operatorname{mem}[0 \times 30] \\ & \operatorname{mem}[0 \times 31] \end{aligned}$	0	1	010000	mem [0x40]* mem[0x41]*	1	\bigcirc
1	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}\right.$	0	1	001100	$\begin{aligned} & \operatorname{mem}[0 \times 32] * \\ & \operatorname{mem}[0 \times 33] \star \end{aligned}$	1	1

writing 1 byte to 0×33 : (set 1 , offset 1) no read or write reading 1 byte from 0×52 : (set 1 , offset 0) write back $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 : (set 0 , offset 0) replace $0 \times 30-0 \times 31$ (no write back); read $0 \times 50-0 \times 51$

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	101000	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 50] \\ \operatorname{mem}[0 \times 51] \end{array}$	0	1	010000	$\begin{aligned} & \operatorname{mem}[0 \times 40] \times \\ & \operatorname{mem}[0 \times 41] \star \end{aligned}$	1	01
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	\bigcirc	1	001100	$\begin{aligned} & \operatorname{mem}[0 \times 32] \star \\ & \operatorname{mem}[0 \times 33] * \end{aligned}$	1	1

writing 1 byte to 0×33 : (set 1 , offset 1) no read or write reading 1 byte from 0×52 : (set 1 , offset 0) write back $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 : (set 0 , offset 0) replace $0 \times 30-0 \times 31$ (no write back); read $0 \times 50-0 \times 51$

exercise (2)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
0	1	001100	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \\ \hline \end{array}$	1	010000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 40] \\ & \operatorname{mem}[0 \times 41] \\ & \hline \end{aligned}\right.$	\bigcirc
1	1	011000	$\operatorname{mem}[0 \times 62]$ mem[0x63]	1	001100	$\left\|\begin{array}{l} \operatorname{mem}[0 \times 32] \\ \operatorname{mem}[0 \times 33] \end{array}\right\|$	1

for each of the following accesses, performed alone, would it require (a) reading a value from memory and (b) writing a value to the memory?
writing 1 byte to 0×33
reading 1 byte from 0×52
reading 1 byte from 0×50

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
0	1	001100	$\left.\begin{array}{\|c} \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \end{array} \right\rvert\,$	1	010000	$\left\lvert\, \begin{array}{l\|} \operatorname{mem}[0 \times 40] \\ \operatorname{mem}[0 \times 41] \end{array}\right.$	0
1	1	011000	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}$	1	001100	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 32] \\ & \operatorname{mem}[0 \times 33] \end{aligned}\right.$	1

writing 1 byte to 0×33 : (set 1 , offset 1) write-through 0×33 modification
reading 1 byte from 0×52 :
reading 1 byte from 0×50 :

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
0	1	001100	$\begin{array}{\|c} \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \end{array}$	1	010000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 40] \\ & \operatorname{mem}[0 \times 41] \end{aligned}\right.$	0
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	1	001100	$\begin{aligned} & \operatorname{mem}[0 \times 32] \\ & \operatorname{mem}[0 \times 33] \end{aligned}$	10

writing 1 byte to 0×33 : (set 1 , offset 1) write-through 0×33 modification
reading 1 byte from 0×52 :
reading 1 byte from 0×50 :

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
0	1	001100	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 30] \\ & \operatorname{mem}[0 \times 31] \end{aligned}\right.$	1	010000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 40] \\ & \operatorname{mem}[0 \times 41] \end{aligned}\right.$	0
1	1	011000	$\operatorname{mem}[0 \times 62]$ mem[0x63]	1	001100	$\left\|\begin{array}{l} \operatorname{mem}[0 \times 32] \\ \operatorname{mem}[0 \times 33] \end{array}\right\|$	1

writing 1 byte to 0×33 : (set 1 , offset 1) write-through 0×33 modification
reading 1 byte from 0×52 : (set 1 , offset 0) replace $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 :

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
0	1	001100	$\begin{array}{\|c\|} \hline \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \end{array}$	1	010000	$\begin{array}{\|c\|} \hline \operatorname{mem}[0 \times 40] \\ \operatorname{mem}[0 \times 41] \\ \hline \end{array}$	0
1	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}\right.$	1	101000	$\begin{array}{\|c\|} \hline \text { mem }[0 \times 52] \\ \operatorname{mem}[0 \times 53] \end{array}$	10

writing 1 byte to 0×33 : (set 1 , offset 1) write-through 0×33 modification
reading 1 byte from 0×52 : (set 1, offset 0) replace $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 :

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
0	1	001100	$\left\|\begin{array}{l} \operatorname{mem}[0 \times 30] \\ \operatorname{mem}[0 \times 31] \end{array}\right\|$	1	010000	$\begin{array}{\|c\|} \hline \operatorname{mem}[0 \times 40] \\ \operatorname{mem}[0 \times 41] \\ \hline \end{array}$	\bigcirc
1	1	011000	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}$	1	001100	$\begin{array}{\|l\|} \hline \operatorname{mem}[0 \times 32] \\ \operatorname{mem}[0 \times 33] \\ \hline \end{array}$	1

writing 1 byte to 0×33 : (set 1 , offset 1) write-through 0×33 modification
reading 1 byte from 0×52 : (set 1 , offset 0) replace $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 : (set 0 , offset 0) replace $0 \times 30-0 \times 31$; read $0 \times 50-0 \times 51$

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index	valid	tag	value	valid	tag	value	LRU
\bigcirc	1	101000	$\left\lvert\, \begin{gathered} \text { mem }[0 \times 50] \\ \operatorname{mem}[0 \times 51] \end{gathered}\right.$	1	010000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 40] \\ & \operatorname{mem}[0 x 41] \end{aligned}\right.$	01
1	1	011000	$\operatorname{mem}[0 \times 62]$ $\operatorname{mem}[0 \times 63]$ mem[0x63]	1	001100	$\left\|\begin{array}{l} \operatorname{mem}[0 \times 32] \\ \operatorname{mem}[0 \times 33] \end{array}\right\|$	1

writing 1 byte to 0×33 : (set 1 , offset 1) write-through 0×33 modification
reading 1 byte from 0×52 : (set 1 , offset 0) replace $0 \times 32-0 \times 33$; read $0 \times 52-0 \times 53$
reading 1 byte from 0×50 : (set 0 , offset 0) replace $0 \times 30-0 \times 31$; read $0 \times 50-0 \times 51$
backup slides

fast writes

write appears to complete immediately when placed in buffer memory can be much slower

cache tradeoffs briefly

deciding cache size, associativity, etc.?
lots of tradeoffs:
more cache hits v. slower cache hits?
faster cache hits v. fewer cache hits?
more cache hits v. slower cache misses?
details depend on programs run how often is same block used again? how often is same index bits used?
simulation to assess impact of designs

arrays and cache misses (1)

```
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {
even_sum += array[i + 0];
odd_sum += array[i + 1];
}
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on initially empty 2 KB direct-mapped cache with 16B cache blocks?

arrays and cache misses (2)

```
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)
    even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)
odd_sum += array[i + 1];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on initially empty 2 KB direct-mapped cache with 16B cache blocks?

arrays and cache misses (2b)

```
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)
    even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)
odd_sum += array[i + 1];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on initially empty 4KB direct-mapped cache with 16B cache blocks?

inclusive versus exclusive

L2 inclusive of L1
everything in L1 cache duplicated in L2 adding to L1 also adds to L2

L2 cache

L2 exclusive of L1

L2 contains different data than L1 adding to L 1 must remove from L2 probably evicting from L1 adds to L2

L2 cache

L1 cache

inclusive versus exclusive

L 2 inclusive of L 1

everything in L 1 cache duplicated in L 2
adding to L 1 also adds to L 2

L2 cache

inclusive policy: no extra work on eviction but duplicated data
easier to explain when
$\mathrm{L} k$ shared by multiple $\mathrm{L}(k-1)$ caches?

inclusive versus exclusive

exclusive policy: avoid duplicated data sometimes called victim cache (contains cache eviction victims)
makes less sense with multicore

L2 exclusive of L1

L2 contains different data than L1 adding to L 1 must remove from L2 probably evicting from L1 adds to L2

L2 cache

Tag-Index-Offset formulas (direct-mapped)

(formulas derivable from prior slides)

$$
S=2^{s} \quad \text { number of sets }
$$

$$
s
$$

$B=2^{b}$
b
(block) offset bits
memory addreses bits
$t=m-(s+b)$ tag bits
$C=B \times S \quad$ cache size (if direct-mapped)

Tag-Index-Offset formulas (direct-mapped)

(formulas derivable from prior slides)

$$
S=2^{s} \quad \text { number of sets }
$$

$$
s
$$

$B=2^{b}$
b
(block) offset bits
$m \quad$ memory addreses bits

$$
t=m-(s+b) \quad \text { tag bits }
$$

$C=B \times S \quad$ cache size (if direct-mapped)

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8 -way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8 -way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

exercise (1)

initial cache: 64 -byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

exercise (2)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256 -byte block, 8 ways/set, 64 KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

exercise (3)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of conflict misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256 -byte block, 8 ways/set, 64 KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

prefetching

seems like we can't really improve cold misses...
have to have a miss to bring value into the cache?

prefetching

seems like we can't really improve cold misses...
have to have a miss to bring value into the cache?
solution: don't require miss: 'prefetch' the value before it's accessed
remaining problem: how do we know what to fetch?

common access patterns

suppose recently accessed 16B cache blocks are at: $0 \times 48010,0 \times 48020,0 \times 48030,0 \times 48040$
guess what's accessed next

common access patterns

suppose recently accessed 16B cache blocks are at: $0 \times 48010,0 \times 48020,0 \times 48030,0 \times 48040$
guess what's accessed next
common pattern with instruction fetches and array accesses

prefetching idea

look for sequential accesses
bring in guess at next-to-be-accessed value
if right: no cache miss (even if never accessed before)
if wrong: possibly evicted something else - could cause more misses
fortunately, sequential access guesses almost always right

quiz exercise solution

one cache block one cache block (set index 1) (set index 0)
 one cache block (set index 1) (set index 0)

$\cdots \overbrace{\operatorname{array[0]} \operatorname{array[1]}}^{\square} \overbrace{\operatorname{array[2]}} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} . .$.

memory access	set $\mathbf{0}$ afterwards	set 1 afterwards
-	(empty)	(empty)
read array [0] (miss)	\{array[0], array[1]\}	(empty)
read array [3] (miss)	\{array[0], array[1]\}	\{array[2], array[3]\}
read array [6] (miss)	\{array[0], array[1]\}	\{array[6], array[7]\}
read array [1] (hit)	\{array[0], array[1]\}	\{array[6], array[7]\}
read array [4] (miss)	\{array[4], array[5]\}	\{array[6], array[7]\}
read array [7] (hit)	\{array[4], array[5]\}	\{array[6], array[7]\}
read array [2] (miss)	\{array [4], array[5]\}	\{array[2], array[3]\}

quiz exercise solution

one cache block one cache block one cache block one cache block (set index 1$) \quad($ set index 0$) \quad($ set index 1$) \quad($ set index 0$)$

$\cdots \overbrace{\operatorname{array[0]}}^{\square} \overbrace{\operatorname{array[1]}} \operatorname{array[2]} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} . .$.

memory access	set $\mathbf{0}$ afterwards	set 1 afterwards
-	(empty)	(empty)
read array [0] (miss)	\{array[0], array[1]\}	empty)
read array [1] (hit)	\{array[0], array[1]\}	array [6], array [7]\}
read array [4] (miss)	\{array[4], array[5]\}	array [6], array [7]\}

quiz exercise solution

one cache block one cache block one cache block one cache block (set index 1$) \quad($ set index 0$) \quad($ set index 1$) \quad($ set index 0$)$

$\ldots \quad \overbrace{\operatorname{array[0]}[\operatorname{array[1]}} \quad \operatorname{array[2]} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} \cdot . .$.

memory access
-
read array [0] (miss)
read array [6] (miss)

read array [7] (hit)
read array[2] (miss)
\square

$\{\operatorname{array}[2], \operatorname{array}[3]\}$
$\{\operatorname{array}[6], \operatorname{array}[7]\}$

set 1 afterwards
(empty)

$\{\operatorname{array}[6], \operatorname{array[7]\} }$
$\{\operatorname{array[2],} \operatorname{array[3]\} }$

not the quiz problem

one cache block one cache block one cache bloc one cache block
$\cdots \overbrace{\operatorname{array[0]}} \cdot \overbrace{\operatorname{array[1]}} \operatorname{array[2]} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} \cdot . .$.
if 1-set 2-way cache instead of 2-set 1-way cache:

memory access	single set with 2-ways, LRU first
-	---, ---
read array [0] (miss)	---, \{array[0], array[1]\}
read array [3] (miss)	\{array[0], array[1]\}, \{array[2], array[3]\}
read array [6] (miss)	\{array[2], array[3]\}, \{array[6], array[7]\}
read array[1] (miss)	\{array[6], array[7]\}, \{array[0], array[1]\}
read array[4] (miss)	\{array[0], array[1]\}, \{array[3], array[4]\}
read array [7] (miss)	\{array[3], array[4]\}, \{array[6], array[7]\}
read array [2] (miss)	\{array[6], array[7]\}, \{array[2], array[3]\}
read array [5] (miss)	\{array[2], array[3]\}, \{array[5], array [6]\}
	\{arrav[5], arrav[6]\} \{arrav[8]. arrav[9]\}

C and cache misses (4)

```
typedef struct {
    int a_value, b_value;
    int other_values[6];
} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

C and cache misses (4, rewrite)

```
int array[40]
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 40; i += 8)
    a_sum += array[i];
for (int i = 1; i < 40; i += 8)
    b_sum += array[i];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny) and array starts at beginning of cache block.

How many data cache misses on a 2-way set associative 128B cache with 16B cache blocks and LRU replacement?

C and cache misses (4, solution pt 1)

 ints 4 byte $\rightarrow \operatorname{array[0~to~3]~and~array[16~to~19]~in~same~cache~set~}$ $64 \mathrm{~B}=16$ ints stored per way4 sets total
accessing $0,8,16,24,32,1,9,17,25,33$

C and cache misses (4, solution pt 1)

ints 4 byte \rightarrow array [0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing $0,8,16,24,32,1,9,17,25,33$
$0($ set 0$), 8(\operatorname{set} 2), 16(\operatorname{set} 0), 24(\operatorname{set} 2), 32(\operatorname{set} 0)$
$1(\operatorname{set} 0), 9(\operatorname{set} 2), 17(\operatorname{set} 0), 25(\operatorname{set} 2), 33(\operatorname{set} 0)$

C and cache misses (4, solution pt 2)

access	set 0 after (LRU first)	result	
-	,--		
array[0]	-, array[0 to 3]	miss	
array[16]	array[0 to 3], array[16 to 19]	miss	6 misses for set 0
array[32]	array[16 to 19], array[32 to 35]	miss	
array[1]	array[32 to 35], array[0 to 3]	miss	
array[17]	array[0 to 3], array[16 to 19]	miss	
array[32]	array[16 to 19], array[32 to 35]	miss	

C and cache misses (4, solution pt 3)

access	set 2 after (LRU first)	result	
-	-,		
array[8]	-, array[8 to 11]	miss	2 misses for set 1
array[24]	array[8 to 11], array[24 to 27]	miss	
array[9]	array[8 to 11], array[24 to 27]	hit	
array[25]	array[16 to 19], array[32 to 35]	hit	

C and cache misses (3)

```
typedef struct {
        int a_value, b_value;
        int other_values[10];
} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)
    b_sum += items[i].b_value;
```

observation: 12 ints in struct: only first two used
equivalent to accessing array[0], array[12], array[24], etc. then accessing array[1], array[13], array[25], etc.

C and cache misses (3, rewritten?)

```
int array[60];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 60; i += 12)
    a_sum += array[i];
for (int i = 1; i < 60; i += 12)
    b_sum += array[i];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny) and array at beginning of cache block.

How many data cache misses on a 128B two-way set associative cache with 16B cache blocks and LRU replacement? observation 1: first loop has 5 misses - first accesses to blocks observation 2: array[0] and array[1], array[12] and array[13], etc. in

C and cache misses (3, solution)

ints 4 byte \rightarrow array [0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

C and cache misses (3, solution)

ints 4 byte \rightarrow array [0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

C and cache misses (3, solution)

ints 4 byte \rightarrow array [0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
0 (set 0 , array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0) each set used at most twice no replacement needed
so access to $1,21,41,61,81$ all hits: set 0 contains block with array[0 to 3] set 5 contains block with array[20 to 23] etc.

C and cache misses (3)

```
typedef struct {
    int a_value, b_value;
    int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16R rarho hlockc?

C and cache misses (3, rewritten?)

item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i $=0$; i < 1024; i += 128)
a_sum += array[i];
for (int i = 1; i < 1024; i += 128) b_sum += array[i];

C and cache misses (4)

```
typedef struct {
    int a_value, b_value;
    int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 4-way set associative 2 KB diroct-manned carhe with 16R rache hlockc?

thinking about cache storage (1)

2 KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

thinking about cache storage (1)

2 KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3]
set 1: address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$ block at 16: array[4] through array[7]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511]

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3]
block at $0+2 \mathrm{~KB}$: array[512] through array [515]
set 1: address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$ block at 16: array[4] through array[7] block at $16+2 \mathrm{~KB}$: array[516] through array[519]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511] block at $2032+2 \mathrm{~KB}$: array[1020] through array[1023]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 K B, 0+4 K B, \ldots$
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$.

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3]
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address $1008,2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} . .$. address 1008: array[252] through array[255]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses

```
set 0: address 0, 0 + 2KB, 0 + 4KB, ...
    block at 0: array[0] through array[3]
        block at 0+1KB: array[256] through array[259]
        block at 0+2KB: array[512] through array[515]
```

set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} . .$.
address 1008: array[252] through array[255]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses

```
set 0: address 0, 0 + 2KB, 0 + 4KB, ...
    block at 0: array[0] through array[3]
        block at 0+1KB: array[256] through array[259]
        block at 0+2KB: array[512] through array[515]
```

set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address $1008,2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} . .$.
address 1008: array[252] through array[255]

arrays and cache misses (3)

```
int sum; int array[1024]; // 4KB array
for (int i = 8; i < 1016; i += 1) {
int local_sum = 0;
for (int j = i - 8; j < i + 8; j += 1) {
        local_sum += array[i] * (j - i);
}
sum += (local_sum - array[i]);
}
```

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on initially empty 2 KB direct-mapped cache with 16B cache blocks?

Tag-Index-Offset exercise

```
m
E
S=2
s
B=2
b
t=m-(s+b) tag bits
C=B\timesS\timesE cache size (excluding metadata)
My desktop:
```

L1 Data Cache: 32 KB, 8 blocks/set, 64 byte blocks
L2 Cache: 256 KB, 4 blocks/set, 64 byte blocks
L3 Cache: $8 \mathrm{MB}, 16$ blocks/set, 64 byte blocks
Divide the address 0×34567 into tag, index, offset for each cache.

T-I-O exercise: L1

quantity	value for L 1
block size (given)	$B=64$ Byte
	$B=2^{b}(b$: block offset bits)

T-I-O exercise: L1

quantity	value for L1
block size (given)	$B=64$ Byte

$$
B=2^{b}(b: \text { block offset bits })
$$

block offset bits $\quad b=6$

T-I-O exercise: L1

quantity	value for L1
block size (given)	$B=64$ Byte

$$
B=2^{b}(b: \text { block offset bits })
$$

block offset bits $\quad b=6$
blocks/set (given) $E=8$
cache size (given) $C=32 \mathrm{~KB}=E \times B \times S$

T-I-O exercise: L1

quantity	value for L1
block size (given)	$B=64$ Byte
	$B=2^{b}(b$: block offset bits)

block offset bits $\quad b=6$
blocks/set (given) $E=8$
cache size (given) $C=32 \mathrm{~KB}=E \times B \times S$
$S=\frac{C}{B \times E}(S:$ number of sets $)$

T-I-O exercise: L1

quantity	value for L1
block size (given)	$B=64$ Byte

$$
B=2^{b}(b: \text { block offset bits })
$$

block offset bits $\quad b=6$

blocks/set (given)	$E=8$
cache size (given)	$C=32 \mathrm{~KB}=E \times B \times S$
	$S=\frac{C}{B \times E}(S:$ number of sets)
number of sets	$S=\frac{32 \mathrm{~KB}}{64 \mathrm{Byte} \times 8}=64$

T-I-O exercise: L1

quantity	value for L1
block size (given)	$B=64$ Byte

$$
B=2^{b}(b: \text { block offset bits })
$$

block offset bits $\quad b=6$
blocks/set (given) $E=8$
cache size (given) $C=32 \mathrm{~KB}=E \times B \times S$

$$
S=\frac{C}{B \underset{ }{\times E}(S: \text { number of sets })}
$$

number of sets
$S=\frac{32 \mathrm{~KB}}{64 \text { Byte } \times 8}=64$
$S=2^{s}$ (s : set index bits)
set index bits
$s=\log _{2}(64)=6$

T-I-O results

	L1	L2	L3
sets	64	1024	8192
block offset bits	6	6	6
set index bits	6	10	13
tag bits		(the rest)	

T-I-O: splitting

L1 L2 L3					
block offset bits 6 6 6 set index bits 6 10 13 tag bits (the rest)					
0×34567 :	3	4	5	6	7
	0011	10100	0101	0110	0111
bits 0-5 (all	fsets): 1001	$1=$		

T-I-O: splitting

T-I-O: splitting

L1 L2 L3					
block offset bits 6 6 6 set index bits 6 10 13 tag bits (the rest)					
0x34567:	3	4	5	6	7
	0011	10100	0101	0110	0111
bits 0-5 (all offsets): $100111=0 \times 27$					
L1:					

bits 6-11 (L1 set): $010101=0 \times 15$
bits 12 - (L1 tag): 0×34

T-I-O: splitting

	L1	L2	L3
block offset bits	6	6	6
set index bits	6	10	13
tag bits	(the rest)		

$\begin{array}{lccccc} & 0 \times 34567: & 3 & 4 & 5 & 6 \\ & 0011 & 0100 & 0101 & 0110 & 0111\end{array}$
bits 0-5 (all offsets): $100111=0 \times 27$
L1:
bits 6-11 (L1 set): $010101=0 \times 15$
bits 12 - (L1 tag): 0×34

T-I-O: splitting

L1 L2 L3					
block offset bits 6		666			
set index bits 6		$6 \quad 10 \quad 13$			
tag bits (the rest)					
0×34567.	3	4	5	6	7
0x34567.	0011	10100	0101	0110	0111

bits 0-5 (all offsets): $100111=0 \times 27$
L2:
bits 6-15 (set for L2): $0100010101=0 \times 115$ bits 16-: 0×3

T-I-O: splitting

bits 6-15 (set for L2): $0100010101=0 \times 115$ bits 16-: 0x3

T-I-O: splitting

L1 L2 L3					
block offset bits 6 6 6 set index bits 6 10 13 tag bits (the rest)					
0x34567:	3	4	5	6	7
	0011	10100	0101	0110	0111

bits 0-5 (all offsets): $100111=0 \times 27$
L3:
bits 6-18 (set for L3): $0110100010101=0 \times D 15$ bits 18-: 0×0

cache operation (associative)

111001

cache operation (associative)

111001

cache operation (associative)

111001

backup slides - cache performance

cache miss types

common to categorize misses:
roughly "cause" of miss assuming cache block size fixed
compulsory (or cold) — first time accessing something
adding more sets or blocks/set wouldn't change
conflict - sets aren't big/flexible enough
a fully-associtive (1-set) cache of the same size would have done better
capacity - cache was not big enough
coherence - from sync'ing cache with other caches only issue with multiple cores

making any cache look bad

1. access enough blocks, to fill the cache
2. access an additional block, replacing something
3. access last block replaced
4. access last block replaced
5. access last block replaced
but - typical real programs have locality

cache optimizations

(assuming typical locality + keeping cache size constant if possible...)
increase cache size increase associativity increase block size add secondary cache write-allocate writeback LRU replacement prefetching
miss rate hit time miss penalty
better worse -
better worse worse?
depends worse worse
better
better - ?

- - ?
better ? worse?
better prefetching $=$ guess what program will use, access in advance average time $=$ hit time + miss rate \times miss penalty

cache optimizations by miss type

(assuming other listed parameters remain constant) capacity conflict compulsory
increase cache size increase associativity fewer misses
fewer misses
fewer misses
more misses?
more misses?
fewer misses

LRU replacement prefetching
fewer misses
\qquad

average memory access time

AMAT $=$ hit time + miss penalty \times miss rate
or AMAT $=$ hit time \times hit rate + miss time \times miss rate
effective speed of memory

AMAT exercise (1)

90\% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
suppose we could increase hit rate by increasing its size, but it would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not increase AMAT?

AMAT exercise (1)

90\% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles
suppose we could increase hit rate by increasing its size, but it would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not increase AMAT?

AMAT exercise (1)

90\% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles
suppose we could increase hit rate by increasing its size, but it would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not increase AMAT?

exercise: AMAT and multi-level caches

suppose we have L1 cache with
3 cycle hit time
90\% hit rate
and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)
and main memory has a 100 cycle access time
assume when there's an cache miss, the next level access starts after the hit time
e.g. an access that misses in L1 and hits in L2 will take $10+3$ cycles what is the average memory access time for the L1 cache?

exercise: AMAT and multi-level caches

suppose we have L1 cache with
3 cycle hit time
90\% hit rate
and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)
and main memory has a 100 cycle access time
assume when there's an cache miss, the next level access starts after the hit time
e.g. an access that misses in L1 and hits in L2 will take $10+3$ cycles what is the average memory access time for the L1 cache?

exercise: AMAT and multi-level caches

suppose we have L1 cache with
3 cycle hit time
90\% hit rate
and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)
and main memory has a 100 cycle access time
assume when there's an cache miss, the next level access starts after the hit time
e.g. an access that misses in L1 and hits in L2 will take $10+3$ cycles what is the average memory access time for the L1 cache?

approximate miss analysis

very tedious to precisely count cache misses
even more tedious when we take advanced cache optimizations into account
instead, approximations:
good or bad temporal/spatial locality good temporal locality: value stays in cache good spatial locality: use all parts of cache block
with nested loops: what does inner loop use? intuition: values used in inner loop loaded into cache once (that is, once each time the inner loop is run) ...if they can all fit in the cache

approximate miss analysis

very tedious to precisely count cache misses
even more tedious when we take advanced cache optimizations into account
instead, approximations:
good or bad temporal/spatial locality good temporal locality: value stays in cache good spatial locality: use all parts of cache block
with nested loops: what does inner loop use? intuition: values used in inner loop loaded into cache once (that is, once each time the inner loop is run) ...if they can all fit in the cache

locality exercise (1)

```
/* version 1 */
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 2 */
for (int j = 0; j < N; ++j)
    for (int i = 0; i < N; ++i)
        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

exercise: miss estimating (1)

```
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
    A[i] += B[j] * C[i * N + j]
```

Assume: 4 array elements per block, N very large, nothing in cache at beginning.

Example: $N / 4$ estimated misses for A accesses:
$\mathrm{A}[\mathrm{i}]$ should always be hit on all but first iteration of inner-most loop. first iter: $A[i]$ should be hit about $3 / 4$ s of the time (same block as $A[i-1]$ that often)

Exericse: estimate \# of misses for B, C

a note on matrix storage

$A-N \times N$ matrix

represent as array
makes dynamic sizes easier:

```
float A_2d_array[N][N];
float *A_flat = malloc(N * N);
```

A_flat $[i \star N+j]===A _2 d _a r r a y[i][j]$

convertion re: rows/columns

going to call the first index rows
$A_{i, j}$ is A row i , column j
rows are stored together
this is an arbitrary choice

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

if array starts on cache block first cache block $=$ first elements all together in one row!

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

second cache block:
1 from row 0
3 from row 1

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

generally: cache blocks contain data from 1 or 2 rows \rightarrow better performance from reusing rows

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is j */
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
for (int $k=0 ; k<N ;++k)$
$C[i \star N+j]+=A[i \star N+k] * B[k \star N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j^{*} /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N$; ++k)
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int j = 0; j < N ; ++j)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

loop orders and locality

loop body: $C_{i j}+=A_{i k} B_{k j}$
kij order: $C_{i j}, B_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $C_{i j}$ has temporal locality

loop orders and locality

loop body: $C_{i j}+=A_{i k} B_{k j}$
kij order: $C_{i j}, B_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $C_{i j}$ has temporal locality

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j^{*} /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N$; ++k)
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int j = 0; j < N ; ++j)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j^{*} /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N$; ++k)
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N$; ++k)
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int j = 0; j < N ; ++j)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

which is better?

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
            C[i*N+j] += A[i * N + k] * B[k * N + j];
/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
            C[i*N+j] += A[i * N + k] * B[k * N + j];
```

exercise: Which version has better spatial/temporal locality for...

array usage: $i j k$ order

for all i : for all j : for all k :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

if N large:
using $C_{i j}$ many times per load into cache using $A_{i k}$ once per load-into-cache
(but using $A_{i, k+1}$ right after) using $B_{k j}$ once per load into cache

array usage: $i j k$ order

for all i :
for all j :
for all k :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks) bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

array usage: $i j k$ order

$A_{x 0} \quad A_{x N}$
for all i :
for all j : for all k :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: temporal locality in C
bad temporal locality in everything else (everything accessed exactly once)

array usage: $i j k$ order

$A_{x 0} \quad A_{x N}$
for all i :
for all j :
for all k :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: row of A (elements used once) column of B (elements used once) single element of C (used many times)

array usage: $i j k$ order

$$
C_{i 0} \text { to } C_{i N}
$$

looking only at two innermost loops together: some temporal locality in A (column reused) some temporal locality in B (row reused) some temporal locality in C (row reused)

array usage: kij order

for all k :
for all i :
for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

if N large:
using $C_{i j}$ once per load into cache (but using $C_{i, j+1}$ right after)
using $A_{i k}$ many times per load-into-cache using $B_{k j}$ once per load into cache (but using $B_{k, j+1}$ right after)

array usage: kij order

for all k :
for all i :
for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

$$
C_{i 0} \text { to } C_{i N}
$$

spatial locality in B, C (use most of loaded B, C cache blocks) no useful spatial locality in A (rest of A's cache block wasted)

array usage: kij order

$$
A_{x 0} \quad A_{x N}
$$

$$
C_{i 0} \text { to } C_{i N}
$$

looking only at innermost loop: for all i : for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

no temporal locality in B, C
(B, C values used exactly once)

array usage: kij order

looking only at innermost loop: processing one element of A (use many times) row of B (each element used once) column of C (each element used once)

array usage: kij order

for all k :

```
for all \(i\) :
for all \(j\) :
\(C_{i j}+=A_{i k} \times B_{k j}\)
for all j:
Cij}+=\mp@subsup{A}{ik}{}\times\mp@subsup{B}{kj}{
```


$C_{i j}$

looking only at two innermost loops together: good temporal locality in A (column reused) good temporal locality in B (row reused) bad temporal locality in C (nothing reused)

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N$; ++k)
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int j = 0; j < N ; ++j)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

performance (with $A=B$)

alternate view 1: cycles/instruction

alternate view 2: cycles/operation

counting misses: version 1

```
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
    for (int k = 0; k < N; ++k)
        C[i * N + j] += A[i* N + k] * B[k * N + j];
```

if N really large
assumption: can't get close to storing N values in cache at once
for A: about $N \div$ block size misses per k-loop total misses: $N^{3} \div$ block size
for B: about N misses per k-loop total misses: N^{3}
for C : about $1 \div$ block size miss per k-loop total misses: $N^{2} \div$ block size

counting misses: version 2

```
for (int \(k=0 ; k<N ;++k)\)
    for (int i = 0; i < N; ++i)
    for (int \(j=0 ; j<N ;++j)\)
    \(C[i * N+j]+=A[i * N+k] * B[k * N+j] ;\)
```

for A : about 1 misses per j-loop total misses: N^{2}
for B: about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size
for C : about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size

exercise: miss estimating (2)

```
for (int k = 0; k < 1000; k += 1)
    for (int i = 0; i < 1000; i += 1)
        for (int j = 0; j < 1000; j += 1)
        A[k*N+j] += B[i*N+j];
```

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1 K elements
estimate: approximately how many misses for A, B ?

$L 1$ misses (with $A=B$)

L1 miss detail (1)

L1 miss detail (2)

addresses

$B[k \star 114+j]$	is at	10	0000	0000	0100
$B[k \star 114+j+1]$	is at	10	0000	0000	1000
$B[(k+1) \star 114+j]$	is at	10	0011	1001	0100
$B[(k+2) \star 114+j]$	is at	10	0101	0101	1100
\cdots					
$B[(k+9) \star 114+j]$	is at	11	0000	0000	1100

addresses

$B[k \star 114+j]$	is at	10	0000	0000	0100
$B[k \star 114+j+1]$	is at	10	0000	0000	1000
$B[(k+1) \star 114+j]$	is at	10	0011	1001	0100
$B[(k+2) \star 114+j]$	is at	10	0101	0101	1100
\cdots					
$B[(k+9) \star 114+j]$	is at	11	0000	0000	1100

test system L1 cache: 6 index bits, 6 block offset bits

conflict misses

powers of two - lower order bits unchanged
$B[k * 93+j]$ and $B[(k+11) \star 93+j]:$
1023 elements apart (4092 bytes; 63.9 cache blocks)
64 sets in L1 cache: usually maps to same set
$B[k \star 93+(j+1)]$ will not be cached (next i loop)
even if in same block as $B[k * 93+j]$
how to fix? improve spatial locality
(maybe even if it requires copying)

locality exercise (2)

```
/* version 2 */
for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 3 */
for (int ii = 0; ii < N; ii += 32)
        for (int jj = 0; jj < N; jj += 32)
        for (int i = ii; i < ij + 32; ++i)
        for (int j = jj; j < jj + 32; ++j)
        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

a transformation

for (int $k=0 ; k<N ; k+=1)$
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$C[i * N+j]+=A[i * N+k]$ * $B[k * N+j] ;$
for (int $k k=0 ; k k<N ; k k+=2$)
for (int $k=k k ; k<k k+2 ;++k)$
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$

$$
C[i \star N+j]+=A[i * N+k] \star B[k \star N+j] ;
$$

split the loop over k - should be exactly the same (assuming even N)

a transformation

for (int k = 0; k < N ; k += 1)
for (int i $=0$; i < N; ++i)
for (int $j=0 ; j<N ;++j)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
for (int kk = 0; kk < N; kk += 2)

$$
\begin{aligned}
& \text { for (int } k=k k ; k<k k+2 ;++k) \\
& \text { for (int } i=0 ; i<N ;++i) \\
& \quad \text { for (int } j=0 ; j<N ;++j) \\
& \quad C[i * N+j]+=A[i \star N+k] * B[k * N+j] ;
\end{aligned}
$$

split the loop over k - should be exactly the same (assuming even N)

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int k = kk; k < kk + 2; ++k) */
        for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
        /* load Aik, Aik+1 into cache and process: */
        for (int k = kk; k < kk + 2; ++k)
        C[i*N+j] += A[i*N+k] * B[k*N+j];
```

now reorder split loop — same calculations

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int \(k=k k ; k<k k+2 ;++k\) ) */
        for (int \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
        for (int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        /* load Aik, Aik+1 into cache and process: */
        for (int \(k=k k ; k<k k+2\); ++k)
        \(C[i * N+j]+=A[i * N+k]\) * \(B[k * N+j] ;\)
```

now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int \(k=k k ; k<k k+2 ;++k\) ) */
        for (int \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
        for (int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        /* load Aik, Aik+1 into cache and process: */
        for (int \(k=k k ; k<k k+2\); ++k)
        \(C[i * N+j]+=A[i * N+k]\) * \(B[k * N+j] ;\)
```

now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
        /* process a "block" of 2 k values: */
        C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
        C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```


simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
    }
}
Temporal locality in \(C_{i j} \mathrm{~S}\)
```


simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```

More spatial locality in $A_{i k}$

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; ++i) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```

Still have good spatial locality in $B_{k j}, C_{i j}$

counting misses for $\mathbf{A}(1)$

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
        C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
        C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}[0 * \mathrm{~N}+1] \ldots$ (repeats N times)
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)

counting misses for A (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
    for (int j = 0; j < N; ++j) {
    C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
    C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times $)$
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], A\left[1^{*} \mathrm{~N}+1\right], A\left[1^{*} \mathrm{~N}+0\right], A\left[1^{*} \mathrm{~N}+1\right] \ldots($ repeats N times $)$
$\mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right] \ldots$ $A\left[0^{*} N+2\right], A\left[0^{*} N+3\right], A\left[0^{*} N+2\right], A\left[0^{*} N+3\right] \ldots$

counting misses for A (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
    for (int j = 0; j < N; ++j) {
    C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
    C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times $)$
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], A\left[1^{*} \mathrm{~N}+1\right], A\left[1^{*} \mathrm{~N}+0\right], A\left[1^{*} \mathrm{~N}+1\right] \ldots($ repeats N times $)$
$\mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right] \ldots$ $A\left[0^{*} N+2\right], A\left[0^{*} N+3\right], A\left[0^{*} N+2\right], A\left[0^{*} N+3\right] \ldots$

counting misses for \mathbf{A} (2)

$\mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times) $\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)

counting misses for \mathbf{A} (2)

$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1] \ldots$ (repeats N times) $\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right], \mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+0], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+1], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+0], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+1] \ldots$ $A[0 * N+2], A[0 * N+3], A[0 * N+2], A[0 * N+3] \ldots$
likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one $\mathrm{A}[0 * \mathrm{~N}+0]$ and $\mathrm{A}[0 * \mathrm{~N}+1]$ usually in same cache block

counting misses for \mathbf{A} (2)

$A\left[0^{*} N+0\right], A\left[0^{*} N+1\right], A\left[0^{*} N+0\right], A\left[0^{*} N+1\right] \ldots($ repeats N times $)$
$A\left[1^{*} N+0\right], A\left[1^{*} N+1\right], A\left[1^{*} N+0\right], A\left[1^{*} N+1\right] \ldots($ repeats N times $)$
$\mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+0], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+1], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+0], \mathrm{A}[(\mathrm{N}-1) * \mathrm{~N}+1] \ldots$ $A[0 * N+2], A[0 * N+3], A[0 * N+2], A[0 * N+3] \ldots$
likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one
$\mathrm{A}[0 * \mathrm{~N}+0]$ and $\mathrm{A}[0 * \mathrm{~N}+1]$ usually in same cache block
about $\frac{N}{2} \cdot N$ misses total

counting misses for B (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
    for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
        C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B[2 * N+0], B[3 * N+0], \ldots B[2 * N+(N-1)], B[3 * N+(N-1)]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$

counting misses for B (2)

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}\left[3^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[2^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}[4 * \mathrm{~N}+0], \mathrm{B}\left[55^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[4^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[5^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$

counting misses for B (2)

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}\left[2^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$
likely cache misses: any access, each time

counting misses for B (2)

access pattern for B :
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}\left[2^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$
likely cache misses: any access, each time
how many cache misses per iteration? equal to \# cache blocks in 2 rows

counting misses for B (2)

access pattern for B :
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B[0 * N+(N-1)], B\left[1^{*} N+(N-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}[2 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}[3 * \mathrm{~N}+(\mathrm{N}-1)]$
$B\left[4^{*} N+0\right], B\left[5^{*} N+0\right], \ldots B\left[4^{*} N+(N-1)\right], B\left[5^{*} N+(N-1)\right]$
$B\left[0^{*} N+0\right], B\left[1^{*} N+0\right], \ldots B\left[0^{*} N+(N-1)\right], B\left[1^{*} N+(N-1)\right]$
likely cache misses: any access, each time
how many cache misses per iteration? equal to \# cache blocks in 2 rows
about $\frac{N}{2} \cdot N \cdot \frac{2 N}{\text { block size }}=N^{3} \div$ block size misses

simple blocking - counting misses

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
```

$\frac{N}{2} \cdot N \mathrm{j}$-loop executions and (assuming N large):
about 1 misses from A per j-loop
$N^{2} / 2$ total misses (before blocking: N^{2})
about $2 N \div$ block size misses from B per j-loop
$N^{3} \div$ block size total misses (same as before blocking)
about $N \div$ block size misses from C per j-loop

simple blocking - counting misses

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
```

$\frac{N}{2} \cdot N \mathrm{j}$-loop executions and (assuming N large):
about 1 misses from A per j-loop $N^{2} / 2$ total misses (before blocking: N^{2})
about $2 N \div$ block size misses from B per j-loop
$N^{3} \div$ block size total misses (same as before blocking)
about $N \div$ block size misses from C per j-loop

improvement in read misses

simple blocking (2)

same thing for i in addition to k ?

```
for (int kk = 0; kk < N; kk += 2) {
    for (int ii = 0; ii < N; ii += 2) {
            for (int j = 0; j < N; ++j) {
            /* process a "block": */
            for (int k = kk; k < kk + 2; ++k)
            for (int i = 0; i < ii + 2; ++i)
                C[i*N+j] += A[i*N+k] * B[k*N+j];
            }
    }
}
```


simple blocking - locality

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            Ci+0,j += A A i+0,k+0}** B <k+0,
            Ci+0,j += A A
            C
            C
        }
    }
}
```


simple blocking - locality

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            Ci+0,j += A A i+0,k+0}** B <k+0,
            Ci+0,j}+=\mp@subsup{A}{i+0,k+1}{}*\mp@subsup{B}{k+1,j}{
            C
            C
        }
    }
}
```

now: more temporal locality in B
previously: access $B_{k j}$, then don't use it again for a long time

simple blocking - counting misses for A

```
for (int k = 0; k < N; k += 2)
    for (int i = 0; i < N; i += 2)
        for (int j = 0; j < N; ++j) {
            C
            Ci+0,j}+=\mp@subsup{A}{i+0,k+1}{}*\mp@subsup{B}{k+1,j}{
            Ci+1,j}+=\mp@subsup{A}{i+1,k+0}{*}*\mp@subsup{B}{k+0,j}{
            C i+1,j += A A i+1,k+1 * }\mp@subsup{B}{k+1,j}{
        }
N
```

likely 2 misses per loop with A (2 cache blocks)
total misses: $\frac{N^{2}}{2}$ (same as only blocking in K)

simple blocking - counting misses for B

```
for (int k = 0; k < N; k += 2)
    for (int i = 0; i < N; i += 2)
        for (int j = 0; j < N; ++j) {
            C}\mp@subsup{C}{i+0,j}{+=}\mp@subsup{A}{i+0,k+0}{** B
            C Ci+0,j += A A i+0,k+1 * B B 
            C}\mp@subsup{C}{i+1,j}{+=}\mp@subsup{A}{i+1,k+0}{* * B B+0,j
            C}\mp@subsup{C}{i+1,j}{+=}\mp@subsup{A}{i+1,k+1}{}*\mp@subsup{B}{k+1,j}{
        }
\(\frac{N}{2} \cdot \frac{N}{2}\) iterations of \(j\) loop
```

likely $2 \div$ block size misses per iteration with B
total misses: $\frac{N^{3}}{2 \cdot \text { block size }}$ (before: $\frac{N^{3}}{\text { block size }}$)

simple blocking - counting misses for C

$$
\begin{aligned}
& \text { for (int k = 0; k < N; k += 2) } \\
& \text { for (int i = 0; i < N; i += 2) } \\
& \text { for (int j = 0; j < N; ++j) \{ } \\
& C_{i+0, j}+=A_{i+0, k+0} * B_{k+0, j} \\
& C_{i+0, j}+=A_{i+0, k+1} * B_{k+1, j} \\
& C_{i+1, j}+=A_{i+1, k+0} * B_{k+0, j} \\
& C_{i+1, j}+=A_{i+1, k+1} * B_{k+1, j} \\
& \text { \} } \\
& \frac{N}{2} \cdot \frac{N}{2} \text { iterations of } j \text { loop }
\end{aligned}
$$

likely $\frac{2}{\text { block size }}$ misses per iteration with C
total misses: $\quad N^{3}$ (same as blocking only in K)

simple blocking - counting misses (total)

```
for (int k = 0; k < N; k += 2)
    for (int i = 0; i < N; i += 2)
    for (int j = 0; j < N; ++j) {
    Ci+0,j
    Ci+0,j}+=\mp@subsup{A}{i+0,k+1}{}*\mp@subsup{B}{k+1,j}{
    Ci+1,j}+=\mp@subsup{A}{i+1,k+0}{*}\mp@subsup{B}{k+0,j}{
    C i+1,j += A A i+1,k+1 * }\mp@subsup{B}{k+1,j}{
    }
```

before:
A: $\frac{N^{2}}{2} ; \mathrm{B}$:

$$
\frac{N^{3}}{1 \cdot \text { block size }} ; \mathrm{C} \frac{N^{3}}{1 \cdot \text { block size }}
$$

after:
$\mathrm{A}: \frac{N^{2}}{0} ; \mathrm{B}: \frac{N^{3}}{2} ; \mathrm{C} \frac{N^{3}}{1}$

generalizing: divide and conquer

```
partial_matrixmultiply(float *A, float *B, float *C
                int startI, int endI, ...) {
    for (int i = startI; i < endI; ++i) {
        for (int j = startJ; j < endJ; ++j) {
        for (int k = startK; k < endK; ++k) {
}
matrix_multiply(float *A, float *B, float *C, int N) {
    for (int ii = 0; ii < N; ii += BLOCK_I)
    for (int jj = 0; jj < N; jj += BLOCK_J)
    for (int kk = 0; kk < N; kk += BLOCK_K)
                /* do everything for segment of A, B, C
                that fits in cache! */
                partial_matmul(A, B, C,
```


array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
inner loops work on "matrix block" of A, B, C rather than rows of some, little blocks of others blocks fit into cache (b/c we choose I, K, J)

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
now (versus loop ordering example) some spatial locality in A, B, and C some temporal locality in A, B, and C

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
$C_{i j}$ calculation uses strips from A, B K calculations for one cache miss good temporal locality!

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$A_{i k}$ used with entire strip of $B J$ calculations for one cache miss good temporal locality!

array usage: matrix block $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

(approx.) $K I J$ fully cached calculations
for $K I+I J+K J$ values need to be lodaed per "matrix block" (assuming everything stays in cache)

cache blocking efficiency

for each of $N^{3} / I J K$ matrix blocks:
load $I \times K$ elements of $A_{i k}$:
$\approx I K \div$ block size misses per matrix block
$\approx N^{3} /(J \cdot$ blocksize $)$ misses total
load $K \times J$ elements of $B_{k j}$:
$\approx N^{3} /(I \cdot$ blocksize $)$ misses total
load $I \times J$ elements of $C_{i j}$:
$\approx N^{3} /(K \cdot$ blocksize $)$ misses total
bigger blocks - more work per load!
catch: $I K+K J+I J$ elements must fit in cache otherwise estimates above don't work

cache blocking rule of thumb

fill the most of the cache with useful data
and do as much work as possible from that
example: my desktop 32 KB L1 cache
$I=J=K=48$ uses $48^{2} \times 3$ elements, or 27 KB .
assumption: conflict misses aren't important

systematic approach

for (int $k=0 ; k<N ;++k)$ \{
for (int i = 0; i < N; ++i) \{
$A_{i k}$ loaded once in this loop:
for (int $\mathrm{j}=0$; j < N ; ++j)
$C_{i j}, B_{k j}$ loaded each iteration (if N big):
$B[i * N+j]+=A[i * N+k]$ * $A[k * N+j] ;$
values from $A_{i k}$ used N times per load
values from $B_{k j}$ used 1 times per load but good spatial locality, so cache block of $B_{k j}$ together
values from $C_{i j}$ used 1 times per load but good spatial locality, so cache block of $C_{i j}$ together

exercise: miss estimating (3)

$$
\begin{aligned}
& \text { for (int } k k=0 ; k k<1000 ; k k+=10) \\
& \text { for (int } j \mathrm{j}=0 ; \mathrm{jj}<1000 ; \mathrm{jj}+=10) \\
& \text { for (int } \mathrm{i}=0 ; \mathrm{i}<1000 ; \mathrm{i}+=1) \\
& \text { for (int } \mathrm{j}=\mathrm{jj} ; \mathrm{j}<\mathrm{jj+10} \mathrm{j}+=1) \\
& \text { for }(\mathrm{int} k=k k ; k<k k+10 ; k+=1) \\
& \\
& A[k \star N+j]+=B[i * N+j] ;
\end{aligned}
$$

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1 K elements, but big enough to hold 500 or so
estimate: approximately how many misses for A, B ?

loop ordering compromises

loop ordering forces compromises:
for k : for i : for $j: c[i, j]+=a[i, k] * b[j, k]$
perfect temporal locality in $a[i, k]$
bad temporal locality for $c[i, j], b[j, k]$
perfect spatial locality in $c[i, j]$
bad spatial locality in $b[j, k], a[i, k]$

loop ordering compromises

loop ordering forces compromises:
for k : for i : for $j: c[i, j]+=a[i, k] * b[j, k]$
perfect temporal locality in $\mathrm{a}[\mathrm{i}, \mathrm{k}]$
bad temporal locality for $c[i, j], b[j, k]$
perfect spatial locality in $c[i, j]$
bad spatial locality in $b[j, k], a[i, k]$
cache blocking: work on blocks rather than rows/columns have some temporal, spatial locality in everything

cache blocking pattern

no perfect loop order? work on rectangular matrix blocks
size amount used in inner loops based on cache size
in practice:
test performance to determine 'size' of blocks
backup slides

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8 -way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies
data cache miss rates:

Cache size	direct-mapped	2-way	8 -way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

exercise (1)

initial cache: 64 -byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

exercise (2)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256 -byte block, 8 ways/set, 64 KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

exercise (3)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of conflict misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256 -byte block, 8 ways/set, 64 KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

prefetching

seems like we can't really improve cold misses...
have to have a miss to bring value into the cache?

prefetching

seems like we can't really improve cold misses...
have to have a miss to bring value into the cache?
solution: don't require miss: 'prefetch' the value before it's accessed
remaining problem: how do we know what to fetch?

common access patterns

suppose recently accessed 16B cache blocks are at: $0 \times 48010,0 \times 48020,0 \times 48030,0 \times 48040$
guess what's accessed next

common access patterns

suppose recently accessed 16B cache blocks are at: $0 \times 48010,0 \times 48020,0 \times 48030,0 \times 48040$
guess what's accessed next
common pattern with instruction fetches and array accesses

prefetching idea

look for sequential accesses
bring in guess at next-to-be-accessed value
if right: no cache miss (even if never accessed before)
if wrong: possibly evicted something else - could cause more misses
fortunately, sequential access guesses almost always right

array usage: $i j k$ order

$A_{x 0} \quad A_{x N}$
for all i :
for all j :
for all k :
$C_{i j}+=A_{i k} \times B_{k j}$
looking only at two innermost loops together: good spatial locality in A poor spatial locality in B good spatial locality in C

array usage: kij order

simple blocking - with 3 ?

```
for (int kk = 0; kk < N; kk += 3)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
            C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];
        }
```

$\frac{N}{3} \cdot N$ j-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration $N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
ahout $3 N$ - block size misses from C ner i-loon iteration

simple blocking - with 3 ?

```
for (int kk = 0; kk < N; kk += 3)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
            C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];
        }
```

$\frac{N}{3} \cdot N \mathrm{j}$-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration $N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
about $3 N$ - hlock size misces from C ner i-lonn iteration

more than 3 ?

can we just keep doing this increase from 3 to some large X ? ... assumption: X values from A would stay in cache X too large - cache not big enough
assumption: X blocks from B would help with spatial locality X too large - evicted from cache before next iteration

array usage (2 k at a time)

I $B_{k i}$ to $B_{k+1, i}$

- $C_{i j}$
for each kt: for each i:
for each j :
for $k=k k, k k+1$:

$$
C_{i j}+=A_{i k} \cdot B_{k j}
$$

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1 \text { : } \\
& \qquad C_{i j}+=A_{i k} \cdot B_{k j}
\end{aligned}
$$

within innermost loop good spatial locality in A bad locality in B
good temporal locality in C

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1 \text { : } \\
& \qquad C_{i j}+=A_{i k} \cdot B_{k j}
\end{aligned}
$$

loop over j : better spatial locality over A than before; still good temporal locality for A

array usage ($2 k$ at a time)

for each kk: for each i:
for each j :

$$
\begin{aligned}
& \text { for } \mathrm{k}=\mathrm{kk}, \mathrm{kk}+1 \text { : } \\
& \qquad C_{i j}+=A_{i k} \cdot B_{k j}
\end{aligned}
$$

loop over j : spatial locality over B is worse but probably not more misses cache needs to keep two cache blocks for next iter instead of one (probably has the space left over!)

array usage (2k at a time)

for each kk: for each i:
for each j :
for $\mathrm{k}=\mathrm{kk}, \mathrm{kk}+1$: have more than 4 cache blocks? $C_{i j}+=A_{i k}$. increasing $k k$ increment would use more of them
right now: only really care about keeping 4 cache blocks in j loop

keeping values in cache

can't explicitly ensure values are kept in cache
...but reusing values effectively does this
cache will try to keep recently used values
cache optimization ideas: choose what's in the cache for thinking about it: load values explicitly for implementing it: access only values we want loaded

TLB and the MMU (1)

TLB and the MMU (2)

TLB and the MMU (2)

TLB and the MMU (2)

TLB and the MMU (2)

TLB miss: page table access happens

TLB and the MMU (2)

TLB miss: TLB gets a copy of the page table entry
se fault?
$110101010011011111]$

$$
\begin{aligned}
& \text { page table } \\
& \text { base register }
\end{aligned}
$$ 0×10000

data or instruction cache

TLB and the MMU (2)

changing page tables

what happens to TLB when page table base pointer is changed?
e.g. context switch
most entries in TLB refer to things from wrong process oops - read from the wrong process's stack?

changing page tables

what happens to TLB when page table base pointer is changed? e.g. context switch
most entries in TLB refer to things from wrong process oops - read from the wrong process's stack?
option 1: invalidate all TLB entries
side effect on "change page table base register" instruction

changing page tables

what happens to TLB when page table base pointer is changed? e.g. context switch
most entries in TLB refer to things from wrong process oops - read from the wrong process's stack?
option 1: invalidate all TLB entries
side effect on "change page table base register" instruction
option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit

editing page tables

what happens to TLB when OS changes a page table entry? most common choice: has to be handled in software

editing page tables

what happens to TLB when OS changes a page table entry? most common choice: has to be handled in software
invalid to valid - nothing needed
TLB doesn't contain invalid entries
MMU will check memory again
valid to invalid - OS needs to tell processor to invalidate it special instruction (x86: invlpg)
valid to other valid - OS needs to tell processor to invalidate it

address splitting for TLBs (1)

 my desktop:4KB (2^{12} byte) pages; 48-bit virtual address
64-entry, 4-way L1 data TLB

TLB index bits?

TLB tag bits?

address splitting for TLBs (1)

my desktop:
4KB (2 2^{12} byte) pages; 48-bit virtual address
64-entry, 4-way L1 data TLB

TLB index bits?
$64 / 4=16$ sets -4 bits
TLB tag bits?
$48-12=36$ bit virtual page number $-36-4=32$ bit TLB tag

address splitting for TLBs (2)

 my desktop:4KB (2^{12} byte) pages; 48-bit virtual address
1536-entry $\left(3 \cdot 2^{9}\right), 12$-way L2 TLB

TLB index bits?

TLB tag bits?

address splitting for TLBs (2)

my desktop:
4KB (2 ${ }^{12}$ byte) pages; 48-bit virtual address
1536-entry $\left(3 \cdot 2^{9}\right)$, 12 -way L2 TLB

TLB index bits?
$1536 / 12=128$ sets -7 bits
TLB tag bits?
$48-12=36$ bit virtual page number $-36-7=29$ bit TLB tag

changing page tables

what happens to TLB when page table base pointer is changed?
e.g. context switch
most entries in TLB refer to things from wrong process oops - read from the wrong process's stack?

changing page tables

what happens to TLB when page table base pointer is changed? e.g. context switch
most entries in TLB refer to things from wrong process oops - read from the wrong process's stack?
option 1: invalidate all TLB entries
side effect on "change page table base register" instruction

changing page tables

what happens to TLB when page table base pointer is changed? e.g. context switch
most entries in TLB refer to things from wrong process oops - read from the wrong process's stack?
option 1: invalidate all TLB entries
side effect on "change page table base register" instruction
option 2: TLB entries contain process ID
set by OS (special register) checked by TLB in addition to TLB tag, valid bit

editing page tables

what happens to TLB when OS changes a page table entry? most common choice: has to be handled in software

editing page tables

what happens to TLB when OS changes a page table entry? most common choice: has to be handled in software
invalid to valid - nothing needed
TLB doesn't contain invalid entries
MMU will check memory again
valid to invalid - OS needs to tell processor to invalidate it special instruction (x86: invlpg)
valid to other valid - OS needs to tell processor to invalidate it

