
1

changelog
26 March 2024: mutual exclusion definition: correct reference to
‘milk’ (from older slides) in example

2

last time
translation lookaside buffers

special additional cache for last-level page table entries
looked by virtual page number
can practically be very small and therefore very fast

pthread API — pthread_create, pthread_join
pthread_join — collect thread function return value + wait for thread
to finish
like waitpid: can call when thread already finished

3

quiz Q1-2
write 4 bytes, set index 4, tag 0x1234 — miss (W 0, R 12)

write-allocate: read rest of block (12 bytes)
write-back: store written data in cache only + mark dirty

read 4 bytes, set index 3, tag 0x1234 — miss (W 0, R 16)
read 16 bytes (block)

write 4 bytes, set index 3, tag 0x1234 — hit (W 0, R 0)
write-back: modify locally, mark dirty

write 4 bytes, set index 4, tag 0x1234 — miss (W 16, R 12)
write-allocate: evict other block which is dirty → write 16 bytes
write-allocate: read rest of block (12 bytes)
write-back: store written data in cache + mark dirty)

writes to next: 0+0+0+16=16; reads: 12+16+0+12=40 4

quiz Q3
0x1000000-0x100000f: cache set 0, array elems 0–3
0x1000010-0x100001f: cache set 1, array elems 4–7
…
0x1000190-0x100019f: cache set 25, array elems 100–103
…
0x1000ff0-0x1000fff: cache set 255, array elems 1020–1023
0x1001000-0x100100f: cache set 0, array elems 1024–1027
0x1001010-0x100101f: cache set 1, array elems 1028–1031
…
0x1001190-0x100119f: cache set 25, array elems 1124–1127

5

quiz Q4
16 entries and 2 ways → 8 entries/way → 8 sets

virtual address 0xABCDEF: VPN 0xABC, page offset 0xDEF

0xABC = (TLB tag) 1010 1011 1 (TLB index) 100 (4)

6

quiz Q5
two address 0x1000 bytes apart same cache set?

not possible if physical addresses (different index bits)

problem: index bits depend on page table mapping

if consecutive VPNs map to similar physical page numbers

…have same index bits

7

quiz Q6
*p = *p + x

modifies *p (what p points to)

p points to variable z

z is local variable for main()

value is on stack

8

quiz Q7
pthread_create returns when new thread is setup

thread may not run until processor core available

thread might run really fast

so all but D are possible

re D: thread’s retun value needs to be kept around + related
bookkeeping

9

thread joining
pthread_join allows collecting thread return value

if you don’t join joinable thread, then memory leak!

avoiding memory leak?

always join…or

“detach” thread to make it not joinable

10

thread joining
pthread_join allows collecting thread return value

if you don’t join joinable thread, then memory leak!

avoiding memory leak?

always join…or

“detach” thread to make it not joinable

10

pthread_detach
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_create(&show_progress_thread, NULL,

show_progress, NULL);

/* instead of keeping pthread_t around to join thread later: */
pthread_detach(show_progress_thread);

}

int main() {
spawn_show_progress_thread();
do_other_stuff();
...

}
detach = don’t care about return value, etc.
system will deallocate when thread terminates

11

starting threads detached
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
pthread_attr_destroy(&attrs);

}

12

setting stack sizes
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
}

13

a threading race
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n");
return NULL;

}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
/* assume does not fail */
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

16

a race
returning from main exits the entire process (all its threads)

same as calling exit; not like other threads

race: main’s return 0 or print_message’s printf first?
time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

17

the correctness problem
two threads?

introduces non-determinism

which one runs first?

allows for “race condition” bugs

…to be avoided with synchronization constructs

18

example application: ATM server
commands: withdraw, deposit

one correctness goal: don’t lose money

19

ATM server
(pseudocode)
ServerLoop() {

while (true) {
ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}
Deposit(accountNumber, amount) {

account = GetAccount(accountNumber);
account−>balance += amount;
SaveAccountUpdates(account);

}

20

a threaded server?
Deposit(accountNumber, amount) {

account = GetAccount(accountId);
account−>balance += amount;
SaveAccountUpdates(account);

}

maybe GetAccount/SaveAccountUpdates can be slow?
read/write disk sometimes? contact another server sometimes?

maybe lots of requests to process?
maybe real logic has more checks than Deposit()
…

all reasons to handle multiple requests at once
→ many threads all running the server loop 21

multiple threads
main() {

for (int i = 0; i < NumberOfThreads; ++i) {
pthread_create(&server_loop_threads[i], NULL,

ServerLoop, NULL);
}
...

}

ServerLoop() {
while (true) {

ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}

22

the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch

lost write to balance
“winner” of the racelost track of thread A’s money

23

the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race

lost track of thread A’s money

23

the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the racelost track of thread A’s money
23

thinking about race conditions (1)
what are the possible values of x? (initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

24

thinking about race conditions (1)
what are the possible values of x? (initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

24

thinking about race conditions (2)
possible values of x? (initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2

if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3
…and why not 7:

B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0

25

thinking about race conditions (2)
possible values of x? (initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2
if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3

…and why not 7:
B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0

25

thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

26

thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

26

thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

26

thinking about race conditions (2)
possible values of x? (initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2
if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3
…and why not 7:

B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0 27

atomic operation
atomic operation = operation that runs to completion or not at all

we will use these to let threads work together

most machines: loading/storing (aligned) words is atomic
so can’t get 3 from x← 1 and x← 2 running in parallel
aligned ≈ address of word is multiple of word size (typically done by
compilers)

but some instructions are not atomic; examples:
x86: integer add constant to memory location
many CPUs: loading/storing values that cross cache blocks

e.g. if cache blocks 0x40 bytes, load/store 4 byte from addr. 0x3E is not atomic
28

lost adds (program)
.global update_loop
update_loop:

addl $1, the_value // the_value (global variable) += 1
dec %rdi // argument 1 -= 1
jg update_loop // if argument 1 >= 0 repeat
ret

int the_value;
extern void *update_loop(void *);
int main(void) {

the_value = 0;
pthread_t A, B;
pthread_create(&A, NULL, update_loop, (void*) 1000000);
pthread_create(&B, NULL, update_loop, (void*) 1000000);
pthread_join(A, NULL); pthread_join(B, NULL);
// expected result: 1000000 + 1000000 = 2000000
printf("the_value = %d\n", the_value);

} 29

lost adds (results)

800000 1000000 1200000 1400000 1600000 1800000 2000000
0

1000

2000

3000

4000

5000

fre
qu

en
cy

the_value = ?

30

but how?
probably not possible on single core

exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

31

but how?
probably not possible on single core

exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

31

so, what is actually atomic
for now we’ll assume: load/stores of ‘words’

(64-bit machine = 64-bits words)

in general: processor designer will tell you

their job to design caches, etc. to work as documented

32

compilers move loads/stores (1)
void WaitForReady() {

do {} while (!ready);
}

WaitForOther:
movl ready, %eax // eax <- other_ready

.L2:
testl %eax, %eax
je .L2 // while (eax == 0) repeat
...

33

compilers move loads/stores (1)
void WaitForReady() {

do {} while (!ready);
}

WaitForOther:
movl ready, %eax // eax <- other_ready

.L2:
testl %eax, %eax
je .L2 // while (eax == 0) repeat
...

33

compilers move loads/stores (2)
void WaitForOther() {

is_waiting = 1;
do {} while (!other_ready);
is_waiting = 0;

}

WaitForOther:
// compiler optimization: don't set is_waiting to 1,
// (why? it will be set to 0 anyway)
movl other_ready, %eax // eax <- other_ready

.L2:
testl %eax, %eax
je .L2 // while (eax == 0) repeat
...
movl $0, is_waiting // is_waiting <- 0

34

compilers move loads/stores (2)
void WaitForOther() {

is_waiting = 1;
do {} while (!other_ready);
is_waiting = 0;

}

WaitForOther:
// compiler optimization: don't set is_waiting to 1,
// (why? it will be set to 0 anyway)
movl other_ready, %eax // eax <- other_ready

.L2:
testl %eax, %eax
je .L2 // while (eax == 0) repeat
...
movl $0, is_waiting // is_waiting <- 0

34

compilers move loads/stores (2)
void WaitForOther() {

is_waiting = 1;
do {} while (!other_ready);
is_waiting = 0;

}

WaitForOther:
// compiler optimization: don't set is_waiting to 1,
// (why? it will be set to 0 anyway)
movl other_ready, %eax // eax <- other_ready

.L2:
testl %eax, %eax
je .L2 // while (eax == 0) repeat
...
movl $0, is_waiting // is_waiting <- 0

34

fixing compiler reordering?
isn’t there a way to tell compiler not to do these optimizations?

yes, but that is still not enough!

processors sometimes do this kind of reordering too (between
cores)

35

pthreads and reordering
many pthreads functions prevent reordering

everything before function call actually happens before

includes preventing some optimizations
e.g. keeping global variable in register for too long

pthread_create, pthread_join, other tools we’ll talk about …
basically: if pthreads is waiting for/starting something, no weird ordering

implementation part 1: prevent compiler reordering
implementation part 2: use special instructions

example: x86 mfence instruction
36

some definitions
mutual exclusion: ensuring only one thread does a particular
thing at a time

like updating shared balance

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

37

some definitions
mutual exclusion: ensuring only one thread does a particular
thing at a time

like updating shared balance

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

37

some definitions
mutual exclusion: ensuring only one thread does a particular
thing at a time

like updating shared balance

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

37

lock analogy
agreement: only change account balances while wearing this hat

normally hat kept on table

put on hat when editing balance

hopefully, only one person (= thread) can wear hat a time

need to wait for them to remove hat to put it on

“lock (or acquire) the lock” = get and put on hat

“unlock (or release) the lock” = put hat back on table

38

lock analogy
agreement: only change account balances while wearing this hat

normally hat kept on table

put on hat when editing balance

hopefully, only one person (= thread) can wear hat a time

need to wait for them to remove hat to put it on

“lock (or acquire) the lock” = get and put on hat

“unlock (or release) the lock” = put hat back on table
38

the lock primitive
locks: an object with (at least) two operations:

acquire or lock — wait until lock is free, then “grab” it
release or unlock — let others use lock, wakeup waiters

typical usage: everyone acquires lock before using shared resource
forget to acquire lock? weird things happen

Lock(account_lock);
balance += ...;
Unlock(account_lock);

39

the lock primitive
locks: an object with (at least) two operations:

acquire or lock — wait until lock is free, then “grab” it
release or unlock — let others use lock, wakeup waiters

typical usage: everyone acquires lock before using shared resource
forget to acquire lock? weird things happen

Lock(account_lock);
balance += ...;
Unlock(account_lock);

39

waiting for lock?
when waiting — ideally:

not using processor (at least if waiting a while)

OS can context switch to other programs

40

pthread mutex
#include <pthread.h>

pthread_mutex_t account_lock;
pthread_mutex_init(&account_lock, NULL);

// or: pthread_mutex_t account_lock =
// PTHREAD_MUTEX_INITIALIZER;

...
pthread_mutex_lock(&account_lock);
balance += ...;
pthread_mutex_unlock(&account_lock);

41

exercise
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);
pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);
pthread_mutex_unlock(&lock1);

}

possible values of one/two after A+B run?
42

exercise (alternate 1)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);
pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);
pthread_mutex_unlock(&lock1);

}

possible values of one/two after A+B run?
43

exercise (alternate 2)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);
pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_unlock(&lock1);
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);

}

possible values of one/two after A+B run?
44

POSIX mutex restrictions
pthread_mutex rule: unlock from same thread you lock in

does this actually matter?

depends on how pthread_mutex is implemented

45

preview: general sync
lots of coordinating threads beyond locks/barriers

will talk about two general tools later:
monitors/condition variables
semaphores

big added feature: wait for arbitrary thing to happen

46

a bad idea
one bad idea to wait for an event:
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; bool ready = false;
void WaitForReady() {

pthread_mutex_lock(&lock);
do {

pthread_mutex_unlock(&lock);
/* only time MarkReady() can run */
pthread_mutex_lock(&lock);

} while (!ready);
pthread_mutex_unlock(&lock);

}
void MarkReady() {

pthread_mutex_lock(&lock);
ready = true;
pthread_mutex_unlock(&lock);

}

wastes processor time; MarkReady can stall waiting for unlock
window

DO NOT USE THIS CODE

47

beyond locks
in practice: want more than locks for synchronization

for waiting for arbtirary events (without CPU-hogging-loop):
monitors
semaphores

for common synchornization patterns:
barriers
reader-writer locks

higher-level interface:
transactions

48

barriers
compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

49

barriers
compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums

49

barriers API
barrier.Initialize(NumberOfThreads)

barrier.Wait() — return after all threads have waited

idea: multiple threads perform computations in parallel

threads wait for all other threads to call Wait()

50

barrier: waiting for finish

partial_mins[0] =
/* min of first

50M elems */;

barrier.Wait();

total_min = min(
partial_mins[0],
partial_mins[1]

);

Thread 0

barrier.Initialize(2);

partial_mins[1] =
/* min of last

50M elems */
barrier.Wait();

Thread 1

51

barriers: reuse

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

52

barriers: reuse

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

52

barriers: reuse

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1

52

pthread barriers
pthread_barrier_t barrier;
pthread_barrier_init(

&barrier,
NULL /* attributes */,
numberOfThreads

);
...
...
pthread_barrier_wait(&barrier);

53

backup slides

54

	pthreads
	join, detach, etc.

	introduction: correctness
	the lost write
	motivation: threaded ATM server?
	example

	race conditions and atomicity
	thinking about simple races
	atomicity definition
	example: x86 add not atomic
	what is atomic?

	revisiting atomicity
	compiler reordering
	fix compiler reordering

	pthreads and load/store reordering
	definitions: mutual exclusion, critical section
	locks
	exercise
	pthread_mutex: lock where you unlock

	preview: more advance sync
	beyond locks

	barriers
	backup slides

