
1

last time
deadlock: X wait for Y [possibly indirectly] wait for X

deadlock requirements
hold and wait
circular dependency

avoiding deadlock:
lock order
undo and retry

2

anonymous feedback (1)
“As a professional, it’s easy to gloss over things that seem obvious to you, but aren’t obvious to others. I
appreciated how Prof. Skadron took his time explaining all the concepts in great detail, often repeating things.
Because of his clarity, I also think there weren’t nearly as many (unnecessary or irrelevant) questions taking time
away from the content. I also liked how he broke down the code in the examples and walked through it with the
class so everyone was on the same page. Sometimes Prof. Reiss will speak very fast and I can’t quite grasp the
words he’s saying, even if I slow the recording down. Usually, Prof. Reiss’s lectures feel rushed and are personally
stressful to watch. It feels to me that we fly through the material without getting the chance to fully understand it,
so while there are in-class examples, we have an incomplete understanding of multiple examples rather than a
complete understanding of a few.”

would like to know specifics re: glossing over things
agree probably should watch for rushing (I worry about semester schedule…)
selfishly like getting questions, so maybe I have bad incentives…
some decision re: in-class exercises to not explain code if giving time to read exercise — bad
choice?

3

anonymous feedback (2)
“Quiz 8 is too difficult. I did the lectures, readings, and supplementary readings and
none of them, including the examples and exercises we did in class, even approached
the complexity of the code snipppets and questions in quiz 8. I understand the
concepts but thinking through race conditions and deadlock is difficult and
error-prone when the provided code is so arduous. The concepts could have been
tested with much simpler code.”

“…I want to clarify that I’m not referring to Questions 5 or 6 where the readability
and intent of the code are good/clear, but Questions 2-4 where things are much
more confusing and complex than examples given and readings.”

4

quiz Q1
key insight:

not waiting on locks → more useful work done
waiting on locks → taking turns, using fewer cores

A: fewer nodes to one node: lock ensures take turns

B: makes it less likely two calls to Find will not try to lock same
thing (after locking root, etc.)

[yes] C: makes it more likely two calls to Find will not try to lock
same thing (after locking root, etc.)

5

quiz Q2 (1)
A: Find holds lock while examining value + left and this code does,
too so Find either sees old or new version (not something in
between)

Find: lock; read value; read left; unlock;
Q2 code: lock; write value; write left; unlock;
can’t squeeze Find’s reads in between the two writes

[yes] B: find gets pointer, then unlocks, so pointer can be
deallocated

Find: next = pointer; unlock;
code above: lock; free pointer; unlock
Find: recursive call, try to lock (free’d memory!)

6

quiz Q2 (2)
C: no, Find always checks for NULL before continuing

(and always reads pointer while holding lock, so no ordering issues re:
reading while write is happening)

7

quiz Q3 (without adding barrier calls)
f1 f2
i = 0: barrier() [A] i = 0: barrier() [A]
i = 0: access global i = 0: [not safe to access]
i = 0: barrier() [B] i = 1: barrier() [B]

i = 1: [safe to access]
i = 1: barrier() [C] i = 2: barrier() [C]
i = 1: access global i = 2: [not safe to access]
i = 1: barrier() [D] i = 3: barrier() [D]

i = 3: [safe to access]
i = 2: barrier() [E] i = 4: barrier() [E]
i = 2: access global i = 4: [not safe to access]
i = 2: barrier() [F] i = 5: barrier() [F]
… … 8

quiz Q4
need same number of barrier calls in f2 as f1

f2 makes 2N = 200 calls

f1 makes M calls, so M = 200

9

quiz Q5A
set_active_by_label(A, A1 label):

lock(A), lock+unlock(elements of A in order) …unlock(A)

set_active_by_label(A, A2 label):
lock(A), lock+unlock(elements of A in order) …unlock(A)

take turns: only one can lock A at a time

10

quiz Q5B
move_version_to_page(A? [A1 or A2 or A3], …):

lock(A?), lock(A) lock(…)

no overlap with in A? (A1/A2/A3)

lock on A means take turns accessing A
no hold and wait

consistently lock A before other overlapping things

11

quiz Q5C
deadlock can occur because move_version_to_page(A1, C) can
run first

…making the other two calls equivalent to running
move_version_to_page(C1, B) and move_version_to_page(B1,
C) at the same time,

…which does lock(C1)lock(C)lock(B) and lock(B1)lock(B)lock(C)

12

quiz Q5D
…lock(A) lock(B)

…lock(B) lock(C)

…lock(C) lock(A)

(ignoring version locks)

13

quiz Q5E
set_active_by_label(A, A2->label):

assuming move doesn’t happen first
lock(A)
lock(A1) unlock(A1)
lock(A2) unlock(A2)

move_version_to_page(A1, B)
lock(A1)
lock(A)
lock(B)

14

quiz Q6
deadlock with two ‘page’ locks

solutions that deal with interaction of non-page locks do not help
(even though a variant that deals with two page locks may)

easiest solution: consistent lock order

15

beyond locks
in practice: want more than locks for synchronization

for waiting for arbtirary events (without CPU-hogging-loop):
monitors
semaphores

for common synchornization patterns:
barriers
reader-writer locks

higher-level interface:
transactions

16

example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

17

example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

17

example: producer/consumer
producer buffer consumer

shared buffer (queue) of fixed size
one or more producers inserts into queue
one or more consumers removes from queue

producer(s) and consumer(s) don’t work in lockstep
(might need to wait for each other to catch up)

example: C compiler
preprocessor → compiler → assembler → linker

17

monitors/condition variables
locks for mutual exclusion

condition variables for waiting for event
represents list of waiting threads
operations: wait (for event); signal/broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables + shared data
Java: every object is a monitor (has instance variables, built-in lock,
cond. var)
pthreads: build your own: provides you locks + condition variables

18

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

19

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

19

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

19

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

19

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

20

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

20

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

20

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

20

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

20

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

21

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

21

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

21

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {

pthread_cond_wait(&finished_cv, &lock);
}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

21

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

21

WaitForFinish timeline 1
WaitForFinish thread Finish thread
mutex_lock(&lock)
(thread has lock)

mutex_lock(&lock)
(start waiting for lock)

while (!finished) ...
cond_wait(&finished_cv, &lock);
(start waiting for cv) (done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)
(done waiting for lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

22

WaitForFinish timeline 2
WaitForFinish thread Finish thread

mutex_lock(&lock)
finished = true
cond_broadcast(&finished_cv)
mutex_unlock(&lock)

mutex_lock(&lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

23

why the loop
while (!finished) {

pthread_cond_wait(&finished_cv, &lock);
}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

24

why the loop
while (!finished) {

pthread_cond_wait(&finished_cv, &lock);
}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

24

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

25

Hoare versus Mesa monitors
Hoare-style monitors

signal ‘hands off’ lock to awoken thread

Mesa-style monitors
any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library I know of does Mesa-style

26

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {

pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

27

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {

pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

27

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {

pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

27

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;
Produce(item) {

pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

27

monitor pattern
pthread_mutex_lock(&lock);
while (!condition A) {

pthread_cond_wait(&condvar_for_A, &lock);
}
... /* manipulate shared data, changing other conditions */
if (set condition A) {

pthread_cond_broadcast(&condvar_for_A);
/* or signal, if only one thread cares */

}
if (set condition B) {

pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

}
...
pthread_mutex_unlock(&lock) 28

monitors rules of thumb
never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X
broadcast/signal condition variable every time you change X

correct but slow to…
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

29

monitors rules of thumb
never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for
always write loop calling cond_wait to wait for condition X
broadcast/signal condition variable every time you change X
correct but slow to…

broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions 29

mutex/cond var init/destroy
pthread_mutex_t mutex;
pthread_cond_t cv;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cv, NULL);
// --OR--
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

// and when done:
...
pthread_cond_destroy(&cv);
pthread_mutex_destroy(&mutex);

30

wait for both finished
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished[2];
pthread_cond_t both_finished_cv;

void WaitForBothFinished() {
pthread_mutex_lock(&lock);
while (_____________________________) {
pthread_cond_wait(&both_finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish(int index) {
pthread_mutex_lock(&lock);
finished[index] = true;

pthread_mutex_unlock(&lock);

}

A. finished[0] && finished[1]
B. finished[0] || finished[1]
C. !finished[0] || !finished[1]
D. finished[0] != finished[1]
E. something else

A. pthread_cond_signal(&both_finished_cv)
B. pthread_cond_broadcast(&both_finished_cv)
C. if (finished[1−index])

pthread_cond_singal(&both_finished_cv);
D. if (finished[1−index])

pthread_cond_broadcast(&both_finished_cv);
E. something else

31

wait for both finished
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished[2];
pthread_cond_t both_finished_cv;

void WaitForBothFinished() {
pthread_mutex_lock(&lock);
while (_____________________________) {
pthread_cond_wait(&both_finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish(int index) {
pthread_mutex_lock(&lock);
finished[index] = true;

pthread_mutex_unlock(&lock);

}

A. finished[0] && finished[1]
B. finished[0] || finished[1]
C. !finished[0] || !finished[1]
D. finished[0] != finished[1]
E. something else

A. pthread_cond_signal(&both_finished_cv)
B. pthread_cond_broadcast(&both_finished_cv)
C. if (finished[1−index])

pthread_cond_singal(&both_finished_cv);
D. if (finished[1−index])

pthread_cond_broadcast(&both_finished_cv);
E. something else

31

wait for both finished
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished[2];
pthread_cond_t both_finished_cv;

void WaitForBothFinished() {
pthread_mutex_lock(&lock);
while (_____________________________) {
pthread_cond_wait(&both_finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish(int index) {
pthread_mutex_lock(&lock);
finished[index] = true;

pthread_mutex_unlock(&lock);

}

A. finished[0] && finished[1]
B. finished[0] || finished[1]
C. !finished[0] || !finished[1]
D. finished[0] != finished[1]
E. something else

A. pthread_cond_signal(&both_finished_cv)
B. pthread_cond_broadcast(&both_finished_cv)
C. if (finished[1−index])

pthread_cond_singal(&both_finished_cv);
D. if (finished[1−index])

pthread_cond_broadcast(&both_finished_cv);
E. something else

31

monitor exercise: barrier
suppose we want to implement a one-use barrier; fill in blanks:
struct BarrierInfo {

pthread_mutex_t lock;
int total_threads; // initially total # of threads
int number_reached; // initially 0

};
void BarrierWait(BarrierInfo *b) {

pthread_mutex_lock(&b−>lock);
++b−>number_reached;
if (b−>number_reached == b−>total_threads) {

} else {

}
pthread_mutex_unlock(&b−>lock);

} 32

monitor exercise: barrier
struct BarrierInfo {

pthread_mutex_t lock;
int total_threads; // initially total # of threads
int number_reached; // initially 0
pthread_cond_t cv;

};

void BarrierWait(BarrierInfo *b) {
pthread_mutex_lock(&b−>lock);
++b−>number_reached;
if (b−>number_reached == b−>total_threads) {

pthread_cond_broadcast(&b−>cv);
} else {

while (b−>number_reached < b−>total_threads)
pthread_cond_wait(&b−>cv, &b−>lock);

}
pthread_mutex_unlock(&b−>lock);

} 32

backup slides

33

producer/consumer signal?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;
Produce(item) {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
/* GOOD CODE: pthread_cond_signal(&data_ready); */
/* BAD CODE: */
if (buffer.size() == 1)

pthread_cond_signal(&item);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

exercise: come up with scenario in which this doesn’t work.
hint 1: assume two waiting consume()s, and two produce() calls
hint 2: related to Mesa-style versus Hoare-style

signaling thread 6 =⇒ thread gets lock next

34

bad case (setup)
thread 0 1 2 3
Consume():
lock
empty? wait on cv Consume():

lock
empty? wait on cv

Produce():
lock Produce():

34

bad case
thread 0 1 2 3
Consume():
lock
empty? wait on cv Consume():

lock
empty? wait on cv

Produce():
lock Produce():

wait for lock
enqueue

wait for lock size = 1? signal
unlock gets lock

enqueue
size 6= 1: don’t signal
unlock

gets lock
dequeue

still waiting
34

monitor exercise: ConsumeTwo
suppose we want producer/consumer, but…
but change Consume() to ConsumeTwo() which returns a pair of
values

and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
35

monitor exercise: solution (1)
(one of many possible solutions)
Assuming ConsumeTwo replaces Consume:
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
if (buffer.size() > 1) { pthread_cond_signal(&data_ready); }
pthread_mutex_unlock(&lock);

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

36

monitor exercise: solution (2)
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using two CVs):
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&one_ready);
if (buffer.size() > 1) { pthread_cond_signal(&two_ready); }
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&one_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&two_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

37

monitor exercise: slower solution
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using one CV):
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
// broadcast and not signal, b/c we might wakeup only ConsumeTwo() otherwise
pthread_cond_broadcast(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&data_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

38

monitor exercise: ordering
suppose we want producer/consumer, but…

but want to ensure first call to Consume() always returns first

(no matter what ordering cond_signal/cond_broadcast use)
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

39

monitor ordering exercise: solution
(one of many possible solutions)
struct Waiter {

pthread_cond_t cv;
bool done;
T item;

}
Queue<Waiter*> waiters;

Produce(item) {
pthread_mutex_lock(&lock);
if (!waiters.empty()) {

Waiter *waiter = waiters.dequeue();
waiter->done = true;
waiter->item = item;
cond_signal(&waiter->cv);
++num_pending;

} else {
buffer.enqueue(item);

}
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
if (buffer.empty()) {

Waiter waiter;
cond_init(&waiter.cv);
waiter.done = false;
waiters.enqueue(&waiter);
while (!waiter.done)
cond_wait(&waiter.cv, &lock);

item = waiter.item;
} else {

item = buffer.dequeue();
}
pthread_mutex_unlock(&lock):
return item;

}

40

41

backup slides

42

using atomic exchange?
example: OS wants something done by whichever core tries first
does not want it started twice!
if two cores try at once, only one should do it
int global_flag = 0;
void DoThingIfFirstToTry() {

int my_value = 1;
AtomicExchange(&my_value, &global_flag);
if (my_value == 0) {

/* flag was zero before, so I was first!*/
DoThing();

} else {
/* flag was already 1 when we exchanged */
/* I was second, so some other core is handling it */

}
} 43

recall: pthread mutex
#include <pthread.h>

pthread_mutex_t some_lock;
pthread_mutex_init(&some_lock, NULL);
// or: pthread_mutex_t some_lock = PTHREAD_MUTEX_INITIALIZER;
...
pthread_mutex_lock(&some_lock);
...
pthread_mutex_unlock(&some_lock);
pthread_mutex_destroy(&some_lock);

44

life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

45

life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

45

→

→

swap
→

←

46

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

47

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

47

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

47

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

47

x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

47

exercise: spin wait
consider implementing ‘waiting’ functionality of pthread_join

thread calls ThreadFinish() when done
complete code below:
finished: .quad 0
ThreadFinish:

ret

ThreadWaitForFinish:

lock xchg %eax, finished
cmp $0, %eax
____ ThreadWaitForFinish
ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

48

exercise: spin wait
finished: .quad 0
ThreadFinish:

__________A______________
ret

ThreadWaitForFinish: /* or without using a writing instruction: */
_________B______________ mov %eax, finished
lock xchg %eax, finished mfence
cmp $0, %eax cmp $0, %eax
__C_ ThreadWaitForFinish je ThreadWaitForFinish
ret ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

48

spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

49

spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

50

mutexes: intelligent waiting
want: locks that wait better

example: POSIX mutexes

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

51

mutexes: intelligent waiting
want: locks that wait better

example: POSIX mutexes

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

51

better lock implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

52

better lock implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

52

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

53

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

53

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

53

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

53

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 53

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 53

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 53

one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 53

mutex and scheduler subtly
core 0 (thread A) core 1 (thread B)
start LockMutex
acquire spinlock
discover lock taken
enqueue thread A
thread A set not runnable
release spinlock start UnlockMutex

thread A set runnable
finish UnlockMutex
run scheduler
scheduler switches to A
…with old verison of registers

thread A runs scheduler …
…finally saving registers …

Linux soln.: track ‘thread running’ separately from ‘thread
runnable’
xv6 soln.: hold scheduler lock until thread A saves registers

54

mutex and scheduler subtly
core 0 (thread A) core 1 (thread B)
start LockMutex
acquire spinlock
discover lock taken
enqueue thread A
thread A set not runnable
release spinlock start UnlockMutex

thread A set runnable
finish UnlockMutex
run scheduler
scheduler switches to A
…with old verison of registers

thread A runs scheduler …
…finally saving registers …

Linux soln.: track ‘thread running’ separately from ‘thread
runnable’
xv6 soln.: hold scheduler lock until thread A saves registers

54

mutex efficiency
‘normal’ mutex uncontended case:

lock: acquire + release spinlock, see lock is free
unlock: acquire + release spinlock, see queue is empty

not much slower than spinlock

55

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

56

implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

56

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

57

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

57

naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

57

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

58

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

58

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

58

naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

58

C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

59

C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

59

C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

59

C++ standard rules for containers
multiple threads can read anything at the same time

can only read element if no other thread is modifying it

can safely add/remove elements if no other threads are accessing
container

(sometimes can safely add/remove in extra cases)

exception: vectors of bools — can’t safely read and write at same
time

might be implemented by putting multiple bools in one int

60

a simple race
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

61

a simple race
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A 61

a simple race: results
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ??? 62

a simple race: results
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ??? 62

why reorder here?
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

thread A: faster to load y right now!

…rather than wait for write of x to finish

63

why load/store reordering?
fast processor designs can execute instructions out of order

goal: do something instead of waiting for slow memory accesses,
etc.

more on this later in the semester

64

GCC: preventing reordering example (1)
void Alice() {

int one = 1;
__atomic_store(¬e_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(¬e_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

65

GCC: preventing reordering example (2)
void Alice() {

note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice <- 1

.L3:
mfence // make sure store is visible to other cores before loading

// on x86: not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
...

66

exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

67

solution
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

68

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

69

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{

pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

69

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

69

xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

69

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

70

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

70

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

70

xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) :);

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

70

fetch-and-add with CAS (1)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true;

} else {
return false;

}
}

long my_fetch_and_add(long *pointer, long amount) { ... }

implementation sketch:
fetch value from pointer old
compute in temporary value result of addition new
try to change value at pointer from old to new
[compare-and-swap]
if not successful, repeat 71

fetch-and-add with CAS (2)
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
} while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

72

exercise: append to singly-linked list
ListNode is a singly-linked list

assume: threads only append to list (no deletions, reordering)

use compare-and-swap(pointer, old, new):
atomically change *pointer from old to new
return true if successful
return false (and change nothing) if *pointer is not old

void append_to_list(ListNode *head, ListNode *new_last_node) {
...

}

73

append to singly-linked list
/* assumption: other threads may be appending to list,
* but nodes are not being removed, reordered, etc.
*/

void append_to_list(ListNode *head, ListNode *new_last_node) {
memory_ordering_fence();
ListNode *current_last_node;
do {
current_last_node = head;
while (current_last_node−>next) {

current_last_node = current_last_node−>next;
}

} while (
!compare−and−swap(¤t_last_node−>next,

NULL, new_last_node)
);

}

73

some common atomic operations (1)
// x86: emulate with exchange
test_and_set(address) {

old_value = memory[address];
memory[address] = 1;
return old_value != 0; // e.g. set ZF flag

}

// x86: xchg REGISTER, (ADDRESS)
exchange(register, address) {

temp = memory[address];
memory[address] = register;
register = temp;

}

74

some common atomic operations (2)
// x86: mov OLD_VALUE, %eax; lock cmpxchg NEW_VALUE, (ADDRESS)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

// x86: lock xaddl REGISTER, (ADDRESS)
fetch−and−add(address, register) {

old_value = memory[address];
memory[address] += register;
register = old_value;

}

75

common atomic operation pattern
try to do operation, …

detect if it failed

if so, repeat

atomic operation does “try and see if it failed” part

76

cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block

77

MSI state summary
Modified value may be different than memory and I am the

only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need to ask for it

78

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus

example: write while Shared
must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

79

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

79

MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy 79

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

80

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100101 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

80

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 101102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

80

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

80

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

80

MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100102 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

80

MSI: update memory
to write value (enter modified state), need to invalidate others

can avoid sending actual value (shorter message/faster)

“I am writing address X” versus “I am writing Y to address X”

81

MSI: on cache replacement/writeback
still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)

82

cache coherency exercise
modified/shared/invalid; all initially invalid; 32B blocks, 8B
read/writes

CPU 1: read 0x1000
CPU 2: read 0x1000
CPU 1: write 0x1000
CPU 1: read 0x2000
CPU 2: read 0x1000
CPU 2: write 0x2008
CPU 3: read 0x1008

Q1: final state of 0x1000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

Q2: final state of 0x2000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

83

cache coherency exercise solution
0x1000-0x101f 0x2000-0x201f

action CPU 1 CPU 2 CPU 3 CPU 1 CPU 2 CPU 3
I I I I I I

CPU 1: read 0x1000 S I I I I I
CPU 2: read 0x1000 S S I I I I
CPU 1: write 0x1000 M I I I I I
CPU 1: read 0x2000 M I I S I I
CPU 2: read 0x1000 S S I S I I
CPU 2: write 0x2008 S S I I M I
CPU 3: read 0x1008 S S S I M I

84

why load/store reordering?
fast processor designs can execute instructions out of order

goal: do something instead of waiting for slow memory accesses,
etc.

more on this later in the semester

85

C++: preventing reordering
to help implementing things like pthread_mutex_lock

C++ 2011 standard: atomic header, std::atomic class

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing

86

C++: preventing reordering example
#include <atomic>
void Alice() {

note_from_alice = 1;
do {

std::atomic_thread_fence(std::memory_order_seq_cst);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice <- 1

.L2:
mfence // make sure store visible on/from other cores
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L2
cmpl $0, no_milk
...

87

C++ atomics: no reordering
std::atomic<int> note_from_alice, note_from_bob;
void Alice() {

note_from_alice.store(1);
do {
} while (note_from_bob.load());
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

88

GCC: built-in atomic functions
used to implement std::atomic, etc.

predate std::atomic

builtin functions starting with __sync and __atomic

these are what xv6 uses

89

aside: some x86 reordering rules
each core sees its own loads/stores in order

(if a core stores something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores too early)

causality :
if a core reads X=a and (after reading X=a) writes Y=b,
then a core that reads Y=b cannot later read X=older value than a

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 90

how do you do anything with this?
difficult to reason about what modern CPU’s reordering rules do

typically: don’t depend on details, instead:

special instructions with stronger (and simpler) ordering rules
often same instructions that help with implementing locks in other ways

special instructions that restrict ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence

91

spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

92

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

93

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

93

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

93

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

93

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

93

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

93

ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

93

ping-ponging
test-and-set problem: cache block “ping-pongs” between caches

each waiting processor reserves block to modify
could maybe wait until it determines modification needed — but not
typical implementation

each transfer of block sends messages on bus

…so bus can’t be used for real work
like what the processor with the lock is doing

94

test-and-test-and-set (pseudo-C)
acquire(int *the_lock) {

do {
while (ATOMIC−READ(the_lock) == 0) { /* try again */ }

} while (ATOMIC−TEST−AND−SET(the_lock) == ALREADY_SET);
}

95

test-and-test-and-set (assembly)
acquire:

cmp $0, the_lock // test the lock non-atomically
// unlike lock xchg --- keeps lock in Shared state!

jne acquire // try again (still locked)
// lock possibly free
// but another processor might lock
// before we get a chance to
// ... so try wtih atomic swap:
movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 (someone else got it first):
jne acquire // try again
ret

96

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

97

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

97

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

97

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

97

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

97

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

97

less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

97

couldn’t the read-modify-write instruction…
notice that the value of the lock isn’t changing…

and keep it in the shared state

maybe — but extra step in “common” case
(swapping different values)

98

more room for improvement?
can still have a lot of attempts to modify locks after unlocked

there other spinlock designs that avoid this
ticket locks
MCS locks
…

99

MSI extensions
real cache coherency protocols sometimes more complex:

separate tracking modifications from whether other caches have
copy

send values directly between caches (maybe skip write to memory)

send messages only to cores which might care (no shared bus)

100

too much milk
roommates Alice and Bob want to keep fridge stocked with milk:
time Alice Bob
3:00 look in fridge. no milk
3:05 leave for store
3:10 arrive at store look in fridge. no milk
3:15 buy milk leave for store
3:20 return home, put milk in fridge arrive at store
3:25 buy milk
3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?

101

too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying, remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?

102

too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying, remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?
102

too much milk “solution” 1 (timeline)
if (no milk) {

if (no note) {

Alice Bob

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

leave note;
buy milk;
remove note;

}
} 103

too much milk “solution” 2 (algorithm)
intuition: leave note when buying or checking if need to buy
leave note;
if (no milk) {

if (no note) {
buy milk;

}
}
remove note;

104

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

105

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note

…will never buy milk (twice or once)

105

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

105

“solution” 3: algorithm
intuition: label notes so Alice knows which is hers (and vice-versa)

computer equivalent: separate noteFromAlice and noteFromBob
variables

leave note from Alice;
if (no milk) {

if (no note from Bob) {
buy milk

}
}
remove note from Alice;

Alice
leave note from Bob;
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob;

Bob

106

too much milk: “solution” 3 (timeline)
leave note from Alice
if (no milk) {

Alice Bob

leave note from Bob
if (no note from Bob) {

buy milk
}

}
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob

remove note from Alice 107

too much milk: is it possible
is there a solutions with writing/reading notes?

≈ loading/storing from shared memory

yes, but it’s not very elegant

108

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

109

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

109

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

109

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

109

Peterson’s algorithm
general version of solution

see, e.g., Wikipedia

we’ll use special hardware support instead

110

mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

111

mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

111

modifying cache blocks in parallel
typical memory access — less than cache block

e.g. one 4-byte array element in 64-byte cache block

what if two processors modify different parts same cache block?
4-byte writes to 64-byte cache block

typically how caches work — write instructions happen one at a
time:

processor ‘locks’ 64-byte cache block, fetching latest version
processor updates 4 bytes of 64-byte cache block
later, processor might give up cache block

112

modifying things in parallel (code)
void *sum_up(void *raw_dest) {

int *dest = (int *) raw_dest;
for (int i = 0; i < 64 * 1024 * 1024; ++i) {

*dest += data[i];
}

}

__attribute__((aligned(4096)))
int array[1024]; /* aligned = address is mult. of 4096 */

void sum_twice(int distance) {
pthread_t threads[2];
pthread_create(&threads[0], NULL, sum_up, &array[0]);
pthread_create(&threads[1], NULL, sum_up, &array[distance]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

}
113

performance v. array element gap
(assuming sum_up compiled to not omit memory accesses)

10 20 30 40 50 60 70
distance between array elements (bytes)

0

100000000

200000000

300000000

400000000

500000000

tim
e

(c
yc

le
s)

114

false sharing
synchronizing to access two independent things

two parts of same cache block

solution: separate them

115

exercise (1)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

results[0] = 0;
for (int i = 0; i < 512; ++i)

results[0] += values[i];
return NULL;

}
void *sum_back(void *ignored_argument) {

results[1] = 0;
for (int i = 512; i < 1024; ++i)

results[1] += values[i];
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

Where is false sharing likely to occur? How to fix?

116

exercise (2)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

my_info->result += my_info->values[i];
}
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

Where is false sharing likely to occur?
117

connecting CPUs and memory
multiple processors, common memory

how do processors communicate with memory?

118

shared bus

CPU1 CPU2 CPU3 CPU4 MEM1 MEM2

one possible design
we’ll revisit later when we talk about I/O

tagged messages — everyone gets everything, filters

contention if multiple communicators
some hardware enforces only one at a time

119

shared buses and scaling
shared buses perform poorly with “too many” CPUs

so, there are other designs

we’ll gloss over these for now

120

shared buses and caches
remember caches?

memory is pretty slow

each CPU wants to keep local copies of memory

what happens when multiple CPUs cache same memory?

121

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

122

the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100101
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

122

	beyond locks
	producer/consumer problem
	monitors
	introduction
	example: WaitForFinished
	unbounded queue with monitors
	Hoare scheduling note
	bounded producer/consumer with monitors
	general monitor pattern
	monitor POSIX API details
	exercise: wait for both finished
	exercise: barrier

	backup slides
	exercise: conditional signal in produce?
	exercise: ConsumeTwo
	exercise: ordering

	backup sides
	higher-level tools from RMW
	recall: POSIX mutexes
	even/odd idea for life hw
	x86-64 spinlock
	exercise: spin-wait
	spinlock problems
	locks that sleep
	pseudocode
	need for scheduler integration
	analysis: uncontended case

	disabling interrupts for locks
	aside: standard container rules
	processor reordering
	why reorder?
	GCC atomic/sync stuff
	exercise: atomic add
	xv6's spinlock debugging
	CAS for fetch-and-add
	exercise: CAS for appending to list
	more atomic operations
	cache coherency detail
	adding more state: MSI
	exercise

	processor load/store reordering
	C++atomic/sync stuff
	x86-64 reordering rules
	test-and-test-and-set
	beyond MSI

	too much milk: locks from load/store?
	setup: buying milk
	wrong solution 1: missed notes
	wrong solution 2: read own note
	wrong solution 3: too little milk
	correct solution: Peterson's algorithm
	mfence
	false sharing
	exercise

	cache coherency
	preview: processor buses
	problem setup / snooping
	the cache coherency problem

