
1



last time
monitor = lock + condition variables + shared data

condition variables (cv) = list of waiting threads
typically: one for each reason to wait

pattern:
Lock(the lock)
while (need to wait) Wait(a cv, the lock)
do operation
if (others might stop waiting) broadcast/signal(their cv)
Unlock(the lock)

2



anonymous feedback (1)
“Proofread quizzes! There was so much ambiguity in Quiz 8 that I am surprised that no one cause
the multitude of ambiguities present in questions 3 and 4. This lack of preparation by the course
staff makes me nervous for the final where answers are no discussed in such a public forum. If
students in the course are painfully aware of quiz question issues, the course staff should be as
well. I am aware of Professor Hott and Pettit giving their research students (not their TAs)
questions to gauge their difficult and how they are written.”

did have multiple TAs look over varoius parts of Q8 (but not with tons of lead time…)
for better or worse, I think only big problem was missing idea modifying N/M (which I
think very very few students realized); otherwise, multiple correct answers (and therefore a
bit annoying to grade), but not really ambiguous

“Would you mind slowing down speaking in lecture, please? …”

“I know a lot of the anonymous feedback is negative, which makes sense to help improve the
course, but I just wanted to say that I honestly think you do an amazing job…”

3



monitor exercise: ConsumeTwo
suppose we want producer/consumer, but…
but change Consume() to ConsumeTwo() which returns a pair of
values

and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
4



monitor exercise: solution (1)
(one of many possible solutions)
Assuming ConsumeTwo replaces Consume:
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
if (buffer.size() > 1) { pthread_cond_signal(&data_ready); }
pthread_mutex_unlock(&lock);

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

5



monitor exercise: solution (2)
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using two CVs):
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&one_ready);
if (buffer.size() > 1) { pthread_cond_signal(&two_ready); }
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&one_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&two_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

6



monitor exercise: slower solution
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using one CV):
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
// broadcast and not signal, b/c we might wakeup only ConsumeTwo() otherwise
pthread_cond_broadcast(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&data_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

7



transactions
transaction: set of operations that occurs atomically

idea: something higher-level handles locking, etc.:
BeginTransaction();
int FromOldBalance = GetBalance(FromAccount);
int ToOldBalance = GetBalance(ToAccount);
SetBalance(FromAccount, FromOldBalance - 100);
SetBalance(ToAccount, FromOldBalance + 100);
EndTransaction();
idea: library/database/etc. makes “transaction” happens all at
once

8



consistency / durability
“happens all at once” = could mean:

locking to make sure no other operations interfere (consistency)

making sure on crash, no partial transaction seen (durability)

(some systems provide both, some provide only one)

we’ll just talk about implementing consistency

9



implementing consistency: simple
simplest idea: only one run transaction at a time

10



implementing consistency: locking
everytime something read/written: acquire associated lock

on end transaction: release lock

if deadlock: undo everything, go back to BeginTransaction(), retry
how to undo?
one idea: keep list of writes instead of writing
apply writes only at EndTransaction()

11



implementing consistency: locking
everytime something read/written: acquire associated lock

on end transaction: release lock

if deadlock: undo everything, go back to BeginTransaction(), retry
how to undo?
one idea: keep list of writes instead of writing
apply writes only at EndTransaction()

11



implementing consistency: optimistic
on read: copy version # for value read

on write: record value to be written, but don’t write yet

on end transaction:
acquire locks on everything
make sure values read haven’t been changed since read

if they have changed, just retry transaction

12



13



recall: sockets
open connection then …

read+write just like a terminal file

doesn’t look like individual messages

“connection abstraction”

14



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to Bqueue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

15



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to B

queue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

15



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to B

queue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

15



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

A sends “letter” to B
“envelope” tells network it’s addressed to B
data in this example: “Hello”

network does its best to get message to Bqueue (‘outgoing mailbox’) of messages
from sending program
waiting to be sent

queue (‘incoming mailbox’) of messages
not yet received by
receiving program

15



connections over mailboxes
real Internet: mailbox-style communication

send “letters” (packets) to particular mailboxes

have “envelope” (header) saying where they go

“best-effort”

no gaurentee on order, when received

no gaurentee on if received

sockets implemented on top of this
16



conections

machine
A

machine
B

(messages to start new ‘connection’)

Conn = Connect(B)

(messages to verify connection is made)

Conn = Accept()

Send(Conn, “2 + 2 = ?”)

“2 + 2 = ?” = Recv(Conn)

Send(B, “4”)

“4” = Recv(Conn)

17



layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

18



layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

19



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

20



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

21



dealing with network message lost

machine
A

machine
B

“The meeting is at 12pm.”

machine
A

machine
B

“The meeting is at 12pm.”

22



handling lost message: acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

23



handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

24



handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

24



handling lost message

machine
A

machine
B

“The meeting is at 12pm.”

“timeout”
A doesn’t get reply
after waiting too long

“The meeting is at 12pm.”

Got it!

24



exercise: lost acknowledgement

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

exercise: how to fix this?
A. machine A needs to send “Got ‘got it!’ ”
B. machine B should resend “Got it!” on its own
C. machine A should resend the original message on its own
D. none of these

25



answers
send “Got ‘got it!’ ”?

same problem: Now send ‘Got Got Got it’?

resend “Got it!” own its own?
how many times? — B doesn’t have that info

resend original message?
yes!
as far as machine A can be, exact same situation as losing original
message

27



lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

28



lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

28



lost acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“The meeting is at 12pm.”

Got it!

A’s going to need to resend this message!
Can’t tell it really was received!

B needs to handle receiving message twice!
Sockets: you only get a copy of the data once.

28



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

29



delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

30



delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

30



delayed message

machine
A

machine
B

“The meeting is at 12pm.”

Got it!

“timeout”

“The meeting is at 12pm.”

Got it!
B resends, can’t tell message is just slow

30



delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost

31



delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost

31



delayed acknowledgements

machine
A

machine
B

“The meeting is at 12pm.”

Got it!
“timeout”

“The meeting is at 12pm.”

Got it!

B can’t tell that first acknowledgment wasn’t lost
31



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

32



splitting messages: try 1

machine
A

machine
B

“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm. 33



splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

got it“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meetingThe meeting is at 12pm.

34



splitting messages: try 1 — problem 1

machine
A

machine
B

“The meeting”

got it“The meeting”

got it“ is at 12pm.”

got it

reconstructed message:
The meetingThe meeting is at 12pm. 34



exercise: other problems?
other scenarios where we’d also have problems?
1. message (instead of acknowledgment) is lost
2. first message from machine A is delayed a long time by network
3. acknowledgment of second message lost instead of first

35



splitting messages: try 2

machine
A

machine
B

part 1: “The meeting”

got itpart 2: “ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm.

36



splitting messages: try 2 — missed ack

machine
A

machine
B

part 1: “The meeting”

got itpart 1: “The meeting”

got itpart 2: “ is at 12pm.”

got it

reconstructed message:
The meeting is at 12pm. 37



splitting messages: try 2 — problem

machine
A

machine
B

part 1: “The meeting”

got itpart 1: “The meeting”

got itpart 2: “ is at 12pm.”

A thinks: part 1 + part 2 acknowleged!
38



splitting messages: version 3

machine
A

machine
B

part 1: “The meeting”

got part 1part 1: “The meeting”

got part 1

part 2: “ is at 12pm.”

timeout
for part 2

part 2: “ is at 12pm.”

got part 2

39



network limitations/failures
messages lost

messages delayed/reordered

messages limited in size

messages corrupted

40



message corrupted
instead of sending “message”

say Hash(“message”) = 0xABCDEF12

then send “0xABCDEF12,message”

when receiving, recompute hash

pretend message lost if does not match

41



“checksum”
these hashes commonly called “checksums”

in UDP/TCP, hash function: treat bytes of messages as array of
integers; then add integers together

42



going faster
so far: send one message, get acknowledgments

pretty slow

instead, can send a bunch of parts and get them acknowledged
together

need to do congestion control to avoid overloading network

43



layers
application HTTP, SSH, SMTP, … application-defined meanings
transport TCP, UDP, … reach correct program,

reliablity/streams
network IPv4, IPv6, … reach correct machine

(across networks)
link Ethernet, Wi-Fi, … coordinate shared wire/radio
physical … encode bits for wire/radio

44



more than four layers?
sometimes more layers above ‘application’

e.g. HTTPS:
HTTP (app layer) on TLS (another app layer) on TCP (network) on …

e.g. DNS over HTTPS:
DNS (app layer) on HTTP on on TLS on TCP on …

e.g. SFTP:
SFTP (app layer??) on SSH (another app layer) on TCP on …

e.g. HTTP over OpenVPN:
HTTP on TCP on IP on OpenVPN on UDP on different IP on …

45



names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

46



backup slides

47



BROKEN: producer/consumer signal
exercise: example why signal here is BROKEN? hint: two
consume()+two produce()
<<<<<<< HEAD
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;
=======
pthread_mutex_t lock; pthread_cond_t data_ready; UnboundedQueue buffer;
>>>>>>> 8863eb3 (monitor slide formatting edits)
Produce(item) {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
/* GOOD CODE: pthread_cond_signal(&data_ready); */
/* BAD CODE: */ if (buffer.size() == 1) pthread_cond_signal(&item);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

BROKEN CODE

48



bad case (setup)
thread 0 1 2 3
Consume():
lock
empty? wait on cv Consume():

lock
empty? wait on cv

Produce():
lock Produce():

50



bad case
thread 0 1 2 3
Consume():
lock
empty? wait on cv Consume():

lock
empty? wait on cv

Produce():
lock Produce():

wait for lock
enqueue

wait for lock size = 1? signal
unlock gets lock

enqueue
size 6= 1: don’t signal
unlock

gets lock
dequeue

still waiting
52



link layer quality of service
if frame gets…
event on Ethernet on WiFi
collides with another detected + may resend resend
not received lose silently resent
header corrupted usually discard silently usually resend
data corrupted usually discard silently usually resend
too long not allowed to send not allowed to send
reordered (v. other messages) received out of order received out of order
destination unknown lose silently usually resend??
too much being sent discard excess? discard excess?

53



network layer quality of service
if packet …
event on IPv4/v6
collides with another out of scope — handled by link layer
not received lost silently
header corrupted usually discarded silently
data corrupted received corrupted
too long dropped with notice or “fragmented” + recombined
reordered (v. other messages) received out of order
destination unknown usually dropped with notice
too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

54



network layer quality of service
if packet …
event on IPv4/v6
collides with another out of scope — handled by link layer
not received lost silently
header corrupted usually discarded silently
data corrupted received corrupted
too long dropped with notice or “fragmented” + recombined
reordered (v. other messages) received out of order
destination unknown usually dropped with notice
too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

54



firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

55



firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

56



t

57



querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

57



querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

58



querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

59



querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

60



‘connected’ UDP sockets
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
bind(fd, &my_addr, sizeof(my_addr))
struct sockaddr_in to_addr = ...;
connect(fd, &to_addr); /* set remote IP address + port */

/* doesn't actually communicate with remote address yet */
...
int count = write(fd, data, data_size);
// OR
int count = send(fd, data, data_size, 0 /* flags */);

/* single message -- sent ALL AT ONCE */

int count = read(fd, buffer, buffer_size);
// OR
int count = recv(fd, buffer, buffer_size, 0 /* flags */);

/* receives whole single message ALL AT ONCE */
61



UDP sockets on IPv4
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
if (0 != bind(fd, &my_addr, sizeof(my_addr)))

handle_error();
...
struct sockaddr_in to_addr = ...;

/* send a message to specific address */
int bytes_sent = sendto(fd, data, data_size, 0 /* flags */,

&to_addr, sizeof(to_addr));

struct sockaddr_in from_addr = ...;
/* receive a message + learn where it came from */

int bytes_recvd = recvfrom(fd, &buffer[0], buffer_size, 0,
&from_addr, sizeof(from_addr));

...

62



what about non-local machines?
when configuring network specify:

range of addresses to expect on local network
128.148.67.0-128.148.67.255 on my desktop
“netmask”

gateway machine to send to for things outside my local network
128.143.67.1 on my desktop
my desktop looks up the corresponding MAC address

63



routes on my desktop
$ /sbin/route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 128.143.67.1 0.0.0.0 UG 100 0 0 enp0s31f6
128.143.67.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s31f6
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 enp0s31f6

network configuration says:

(line 2) to get to 128.143.67.0–128.143.67.255, send directly on
local network

“genmask” is mask (for bitwise operations) to specify how big range is

(line 3) to get to 169.254.0.0–169.254.255.255, send directly on
local network
(line 1) to get anywhere else, use “gateway” 128.143.67.1 64



querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

65



querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

66



querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

67



querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

68



connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69



connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69



connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69



connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

69



connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

70



connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

70



connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

70



connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

70



echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

71



echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

71



echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

71



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

72



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

72



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

72



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

72



connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

73



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

74



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

74



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

74



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

74



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

74



connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

75



connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

75



connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

75



connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

76



connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

76



connection setup: old lookup function
/* example hostname, portnum= "www.cs.virginia.edu", 443*/
const char *hostname; int portnum;
...
struct hostent *server_ip;
server_ip = gethostbyname(hostname);

if (server_ip == NULL) { /* handle error */ }

struct sockaddr_in addr;
addr.s_addr = *(struct in_addr*) server_ip−>h_addr_list[0];
addr.sin_port = htons(portnum);
sock_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sock_fd, &addr, sizeof(addr));
...

77



aside: on server port numbers
Unix convention: must be root to use ports 0–1023

root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

78


	exercise: ConsumeTwo
	recall: sockets
	mailbox model
	review: connection abstraction
	layers preview
	handling network failures
	acknowledgments
	exercise: lost acks
	solution: lost acks
	delayed acks

	splitting into multiple
	checksums
	aside: going faster

	layers, revisited
	addresses versus names
	backup slides
	exercise: conditional signal in produce?
	link layer quality-of-service
	network layer quality-of-service

	firewalls
	DIG trace
	UDP sockets
	ARP / IPv6 ND routing
	DNS: dig +trace
	example: echo client/server
	server setup
	client setup
	read/write code

	more normal connection setup
	other connection setup options


