
1

last time
link-layer frame — send/receive on local network

MAC addresses identifying source/destination machine (within local
network)
frame usually contains packet (potentially with info about far-fledged
machines)

network-layer packet — forwarded between networks via routers
IP(v4,v6) addresses
routers have table — IP address → place to send
usually contain segment/datagram

transport-layer segment/datagram
port numbers (which program on machine)

DNS: domain name → IP addresses
distributed, hierarchical database
each organization responsible for own names

2

quiz Q1/2
while (cannot return yet)

cond_wait(…)

cannot use file_is_processed_cv because cannot cond wait on two
CVs at once

only solution: cond-wait on single cv
is going to require waking up sometimes when not ready
would need changes to other functions to avoid that

3

quiz Q3
removing unlock()+lock() prevents othre threads from running in
between

means processfile would happen with lock held

4

quiz Q4
correct solutions: wait for each things not done individually

cannot wait for things that are done — because could wait forever

5

quiz Q5
A to B [lost]: msg 1

A to B: msg 1

B to A [lost]: ack msg 1

B to A: ack msg 1

A to B: msg 2

B to A [lost]: ack msg 2

B to A: ack msg 2

…
6

quiz Q6
cross network time can overlap

at time 0: A to B: msg 1 (1 to send + 10 to transit)

at time 1: A to B: msg 2 (1 + 10)

at time 2: A to B: msg 3 (1 + 10)

…

at time 9: A to B: msg 10 (1 + 10)

→ B receives msg 10 at time 20

7

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

8

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

9

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

10

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

10

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

10

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

10

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

10

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

11

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

12

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

13

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

14

exercise
suppose initially

*.foo.com DNS server (‘nameserver’) = 10.2.3.4, valid 200 s
www.foo.com = 10.1.2.3, valid 100 s

if at time 0 seconds, changed to:
*.foo.com DNS server = 10.3.4.5, valid 100 s
www.foo.com DNS server = 10.3.5.1, valid 400 s

ex 0: when will new DNS server/www.foo.com start being used?

ex 1: when can we shut down old DNS server?

ex 2: when can we shut down old www.foo.com?
15

names and addresses
name address
logical identifier location/how to locate
variable counter memory address 0x7FFF9430

DNS name www.virginia.edu IPv4 address 128.143.22.36
DNS name mail.google.com IPv4 address 216.58.217.69
DNS name mail.google.com IPv6 address 2607:f8b0:4004:80b::2005
DNS name reiss-t3620.cs.virginia.edu IPv4 address 128.143.67.91
DNS name reiss-t3620.cs.virginia.edu MAC address 18:66:da:2e:7f:da

service name https port number 443
service name ssh port number 22

16

two types of addresses?
MAC addreses: on link layer

IP addresses: on network layer

how do we know which MAC address to use?

17

a table on my desktop
my desktop:

$ arp -an
? (128.143.67.140) at 3c:e1:a1:18:bd:5f [ether] on enp0s31f6
? (128.143.67.236) at <incomplete> on enp0s31f6
? (128.143.67.11) at 30:e1:71:5f:39:10 [ether] on enp0s31f6
? (128.143.67.92) at <incomplete> on enp0s31f6
? (128.143.67.5) at d4:be:d9:b0:99:d1 [ether] on enp0s31f6

…
network address to link-layer address + interface

only tracks things directly connected to my local network
non-local traffic sent to local router

18

how is that table made?
ask all machines on local network (same switch)

“Who has 128.148.67.140”

the correct one replies

19

addendum re: routing
routers track network + next router for IP address range

20

IPv4 addresses and routing tables

router
network 1 network 2

network 3

if I receive data for… send it to…
128.143.0.0—128.143.255.255 network 1, 11.4.3.2
192.107.102.0–192.107.102.255 network 1, 11.4.3.2
… …
4.0.0.0–7.255.255.255 network 2, 12.4.6.4
64.8.0.0–64.15.255.255 network 2, 45.4.0.1
… …
anything else network 3, 199.44.33.1 21

URL / URIs
Uniform Resource Locators (URL)

tells how to find “resource” on network
uniform — one syntax for multiple protocols (types of servers, etc.)

Unifrom Resources Identifiers
superset of URLs

22

URI examples
https://kytos02.cs.virginia.edu:443/cs3130-spring2023/

quizzes/quiz.php?qid=02#q2

https://kytos02.cs.virginia.edu/cs3130-spring2023/
quizzes/quiz.php?qid=02

https://www.cs.virginia.edu/

sftp://cr4bd@portal.cs.virginia.edu/u/cr4bd/file.txt

tel:+1-434-982-2200

//www.cs.virginia.edu/~cr4bd/3130/S2023/
/~cr4bd/3130/S2023

scheme and/or host implied from context 23

URI generally
scheme://authority/path?query#fragment
scheme: — what protocol
//authority/

authoirty = user@host:port OR host:port OR user@host OR host

path
which resource

?query — usually key/value pairs
#fragment — place in resource

most components (sometimes) optional
24

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

25

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

25

autoconfiguration
problem: how does my machine get IP address

otherwise:
have sysadmin type one in?
just choose one?
ask machine on local network to assign it

often local router machine runs service to assign IP addresses
knows what IP addresses are available
sysadmin might configure in mapping from MAC addresses to IP
addresses

25

DHCP high-level
protocol done over UDP

but since we don’t have IP address yet, use 0.0.0.0

and since we don’t know server address, use 255.255.255.255
= “everyone on the local network”

local server replies to request with address + time limit

later: can send messages to local server to renew/give up address

26

DHCP high-level
protocol done over UDP

but since we don’t have IP address yet, use 0.0.0.0

and since we don’t know server address, use 255.255.255.255
= “everyone on the local network”

local server replies to request with address + time limit

later: can send messages to local server to renew/give up address

26

exercise: why time limit?
DHCP “lease”

rather than getting address forever

but DHCP has way of releasing taken address

why impose a time limit

27

network address translation
IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for machines

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

28

implementing NAT
remote host + port outside local port number inside IP inside port number
128.148.17.3:443 54033 192.168.1.5 43222
11.7.17.3:443 53037 192.168.1.5 33212
128.148.31.2:22 54032 192.168.1.37 43010
128.148.17.3:443 63039 192.168.1.37 32132

table of the translations
need to update as new connections made

29

upcoming lab
request + receive message split into pieces

you are responsible for:
requesting parts in order
resending requests if messages lost/corrupted

“acknowledge” receiving part X to request part X+1

30

upcoming lab
request + receive message split into pieces

you are responsible for:
requesting parts in order
resending requests if messages lost/corrupted

“acknowledge” receiving part X to request part X+1

30

protocol
GETx — retrieve message x (x = 0, 1, 2, or 3)

other end acknowledges by giving data
if they don’t reply, you need to send again
higher numbered messages have errors/etc. that are harder to handle

ACKn
request message n + 1 by acknowledging message n
not quite same purpose as acknowledgments in prior examples
(in lab, the response is your ‘acknowledgment’ of your request;
you retry if you don’t get it)

31

protocol
GETx — retrieve message x (x = 0, 1, 2, or 3)

other end acknowledges by giving data
if they don’t reply, you need to send again
higher numbered messages have errors/etc. that are harder to handle

ACKn
request message n + 1 by acknowledging message n
not quite same purpose as acknowledgments in prior examples
(in lab, the response is your ‘acknowledgment’ of your request;
you retry if you don’t get it)

31

callback-based programming (1)
/* library code you don't write */
/* in the lab: part of waitForAllTimeoutsAndMessagesThenExit() */
void mainLoop() {

while (notExiting) {
Event event = waitForAndGetNextEvent();
if (event.type == RECIEVED) {

recvd(...);
} else if (event.type == TIMEOUT) {

(event.timeout_function)(...);
}
...

}
}

32

callback-based programming (2)
/* your code, called by library */
void recvd(...) {

...
setTimeout(..., timerCallback, ...);

}

void timerCallback(...) {
...

}

int main() {
send(.../* first message */);
... /* other initial setup */
waitForAllTimeoutsAndMessagesThenExit(); // runs mainLoop()

}
33

callback-based programming
writing scripts in a webpage

many graphical user interface libraries

sometimes servers that handle lots of connections

34

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

35

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

36

secure communication context
“secure” communication

mostly talk about on network

between principals ≈ people/servers/programs

but same ideas apply to, e.g., messages on disk
communicating with yourself

37

A to B
running example: A talking with B

maybe sometimes also with C

attacker E — eavesdropper
passive
gets to read all messages over network

attacker M — machine-in-the-middle
active
gets to read and replace and add messages on the network

38

privileged network position
intercept radio signal?

control local wifi router?
may doesn’t just forward messages

compromise network equipment?

send packets with ‘wrong’ source address
called “spoofing”

fool DNS servers to ‘steal ’name?

fool routers to send you other’s data?

39

possible security properties? (1)
what we’ll talk about:

confidentiality — information shared only with those who should
have it

authenticity — message genuinely comes from right principal (and
not manipulated)

40

possible security properties? (2)
important ones we won’t talk about…:

repudiation — if A sends message to B, B can’t prove to C it came
from A

(takes extra effort to get along with authenticity)

forward-secrecy — if A compromised now, E can’t use that to
decode past conversations with B

anonymity — A can talk to B without B knowing who it is

…

41

secrets
if A is talking to B are communicating,
what stops M (machine-in-the-middle) from pretending to be B?

assumption: B knows some secret information that M does not

start: assume A and B have a shared secret they both know
(and attackers do not)

(later: easier to setup assumptions)

42

secrets
if A is talking to B are communicating,
what stops M (machine-in-the-middle) from pretending to be B?

assumption: B knows some secret information that M does not

start: assume A and B have a shared secret they both know
(and attackers do not)

(later: easier to setup assumptions)

42

bad ways to use shared secret
A → B: What’s the password?

B → A: It’s ‘AbcxyMe’.

A → B: That’s right! Here’s my confidential information.

well, this doesn’t really help:
against E (eavesdropper), who can read the password AND confidential
info
against M (machine-in-the-middle), who can also pretend to be A for B

43

bad ways to use shared secret
A → B: What’s the password?

B → A: It’s ‘AbcxyMe’.

A → B: That’s right! Here’s my confidential information.

well, this doesn’t really help:
against E (eavesdropper), who can read the password AND confidential
info
against M (machine-in-the-middle), who can also pretend to be A for B

43

symmetric encryption
some magic math!

we’ll be given two functions by expert:
encrypt: E(key,message) = ciphertext
decrypt: D(key, ciphertext) = message

key = shared secret
ideally small (easy to share) and chosen at random
unsolved problem: how to share it?

44

symmetric encryption properties (1)
our functions:

encrypt: E(key,message) = ciphertext
decrypt: D(key, ciphertext) = message

knowing E and D, it should be hard to
learn anything about the message from the ciphertext without key

“hard” ≈ would have to try every possible key

45

symmetric encryption properties (1)
our functions:

encrypt: E(key,message) = ciphertext
decrypt: D(key, ciphertext) = message

knowing E and D, it should be hard to
learn anything about the message from the ciphertext without key

“hard” ≈ would have to try every possible key

45

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 46

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 46

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 46

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 46

secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker
chooses, or

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or
“related key”

… 46

using?
in advance: A and B share encryption key

A computes E(key, ‘The secret formula is…’) = ***

send on network:
A → B: ***

B computes D(key, ***) = ‘The secret formula is …’

47

using?
in advance: A and B share encryption key

A computes E(key, ‘The secret formula is…’) = ***

send on network:
A → B: ***

B computes D(key, ***) = ‘The secret formula is …’

47

encryption is not enough
if B receives an encrypted message from A, and…

it makes sense when decrypted, why isn’t that good enough?

problem: an active attacker M
can selectively manipulate the encrypted message

48

manipulating encrypted data?
one example: common symmetric encryption approach:

use random number + shared secret to…
produce sequence of hard-to-guess bits xi as long as the message
produce ciphertext with xor: ci = mi ⊕ xi

message = m0m1m2 . . .; ciphertext = [random number]c0c1c2 . . .

means that flipping ci flips bit mi

also means that we can shorten messages silently

49

manipulating messages
as an active attacker

if we know part of plaintext
can sometimes make it read anything else by flipping bits

“Pay $100 to Bob” → “Pay $999 to Bob”

we can shorten
“Pay $100 to ABC Corp if they …” → “Pay $100 to ABC Corp”

we can corrupt selected parts of message and check the response is
e.g. what changes don’t make B reject message as malformed?

50

message authentication codes (MACs)
goal: use shared secret key to verify message origin

one function: MAC(key,message) = tag

knowing MAC and the message and the tag, it should be hard to:
find the value of MAC(key, other message) — (“forge” the tag)
find the key

51

contrast: MAC v checksum
message authentication code acts like checksum, but…

checksum can be recomputed without any key

checksum meant to protect against accidents, not malicious
attacks

checksum can be faster to compute + shorter

52

using without encryption?
in advance: choose + share MAC key

A prepares message:
A computes ‘Please pay $100 to M.’
A computes MAC(MAC key, ‘Please pay $100 to M.’) = @@@

A → B: Please pay $100 to M. @@@

B processes message:
B recomputes MAC(MAC key, ‘Please pay $100 to M.’)
rejects if it doesn’t match @@@

53

using without encryption?
in advance: choose + share MAC key

A prepares message:
A computes ‘Please pay $100 to M.’
A computes MAC(MAC key, ‘Please pay $100 to M.’) = @@@

A → B: Please pay $100 to M. @@@

B processes message:
B recomputes MAC(MAC key, ‘Please pay $100 to M.’)
rejects if it doesn’t match @@@

53

using with encryption?
in advance: choose + share encryption key and MAC key

A prepares message:
A computes E(encrypt key, ‘The secret formula is…’) = ***
A computes MAC(MAC key, ***) = @@@

A → B: *** @@@

B processes message:
B recomputes MAC(MAC key, ***)
rejects if it doesn’t match @@@
B computes D(key, ***) = ‘The secret formula is …’

54

using with encryption?
in advance: choose + share encryption key and MAC key

A prepares message:
A computes E(encrypt key, ‘The secret formula is…’) = ***
A computes MAC(MAC key, ***) = @@@

A → B: *** @@@

B processes message:
B recomputes MAC(MAC key, ***)
rejects if it doesn’t match @@@
B computes D(key, ***) = ‘The secret formula is …’

54

“authenticated encryption”
often encryption + MAC packaged together

name: authenticated encryption

55

exercise
suppose A, B have shared keys K1, K2

assume attackers do not have keys

E/D = encrypt/decrypt function
A asks B to pay Sue $100 by sending message with these parts:

“2023-11-03: pay $100”
E(K1, “2023-11-03 Sue”)
MAC(K2, “2023-11-03 $100”)

1. can eavesdropper learn: (a) who is being paid, (b) how much?

2. can machine-in-middle change: (a) who is being paid, (b) how
much?

56

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

57

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

57

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

57

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

58

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

58

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

58

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

58

asymmetric encryption
we’ll have two functions:

encrypt: PE(public key,message) = ciphertext
decrypt: PD(private key, ciphertext) = message

(public key, private key) = “key pair”

59

key pairs
‘private key’ = kept secret

usually not shared with anyone

‘public key’ = safe to give to everyone
usually some hard-to-reverse function of public key

concept will appear in some other cryptographic primitives

60

asymmetric encryption properties
functions:

encrypt: PE(public key,message) = ciphertext
decrypt: PD(private key, ciphertext) = message

should have:
knowing PE, PD, the public key, and ciphertext shouldn’t make it too
easy to find message
knowing PE, PD, the public key, ciphertext, and message shouldn’t
help in finding private key

61

secrecy properties with asymmetric
not going to be able to make things as hard as “try every possibly
private key”

but going to make it impractical

like with symmetric encryption want to prevent recovery of any info
about message

also have some other attacks to worry about:
e.g. no info about key should be revealed based on our reactions to
decrypting maliciously chosen ciphertexts

62

using asymmetric v symmetric
both:

use secret data to generate key(s)

asymmetric (AKA public-key) encryption
one “keypair” per recipient
private key kept by recipient
public key sent to all potential senders
encryption is one-way without private key

symmetric encryption
one key per (recipient + sender)
secret key kept by recipient + sender
if you can encrypt, you can decrypt

63

using?
in advance: B generates private key + public key

in advance: B sends public key to A (and maybe others) securely

A computes PE(public key, ‘The secret formula is…’) = *******

send on network:
A → B: ********

B computes PD(private key, *******) = ‘The secret formula is …’

64

digital signatures
symmetric encryption : asymetric encryption ::
message authentication codes : digital signatures

65

digital signatures
pair of functions:

sign: S(private key,message) = signature
verify: V (public key, signature,message) = 1 (“yes, correct signature”)

(public key, private key) = key pair (similar to asymmetric
encryption)

public key can be shared with everyone
knowing S, V , public key, message, signature
doesn’t make it too easy to find another message + signature so that
V (public key, other message, other signature) = 1

66

using?
in advance: A generates private key + public key

in advance: A sends public key to B (and maybe others) securely

A computes S(private key, ‘Please pay ...’) = *******

send on network:
A → B: ‘I authorize the payment’, ********

B computes V (public key, ‘Please pay ...’, *******) = 1

67

tools, but...
have building blocks, but less than straightforward to use

lots of issues from using building blocks poorly

start of art solution: formal proof sytems

68

replay attacks
A→B: Did you order lunch? [signature 1 by A]

signature 1 by A = Sign(A’s private signing key, “Did you order lunch?”)
will check with Verify(A’s public key, signature 1 by A, “Did you order
lunch?”)

B→A: Yes. [signature 1 by B]
signature 1 by B = Sign(B’s private key, “Yes.”)
will check with Verify(B’s public key, signature 1 by B, “Yes.”)

A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature N by A]

so attacker can’t manipulate/forge messages, everything’s okay?

69

replay attacks
A→B: Did you order lunch? [signature 1 by A]
B→A: Yes. [signature 1 by B]
A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “Yes.”, signature 2 from B) = 1

70

replay attacks
A→B: Did you order lunch? [signature 1 by A]
B→A: Yes. [signature 1 by B]
A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “Yes.”, signature 2 from B) = 1 70

nonces (1)
one solution to replay attacks:
A→B: #1 Did you order lunch? [signature 1 from A]

signature from A = Sign(A’s private key, “#1 Did you order lunch?”)

B→A: #1 Yes. [signature 1 from B]
A→B: #2 Vegetarian? [signature 2 from A]
B→A: #2 No, not this time. [signature 2 from B]
…
A→B: #54 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? from A]

(assuming A actually checks the numbers)
71

nonces (2)
another solution to replay attacks:
B→A: [next number #91523] [signature from B]
A→B: #91523 Did you order lunch? [next number #90382]
[signature from A]
B→A: #90382 Yes. [next number #14578] [signature from B]
…
A→B: #6824 There’s a guy at the door, says he’s here to repair
the AC. Should I let him in? [next number #36129][signature from
A]

(assuming A actually checks the numbers)
72

replay attacks (alt)
M→B: #50 Did you order lunch? [signature by M]
B→M: #50 Yes. [signature intended for M by B]
A→B: #50 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? by A]

how can M hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “#50 Yes.”, signature intended for M by B) = 1

73

replay attacks (alt)
M→B: #50 Did you order lunch? [signature by M]
B→M: #50 Yes. [signature intended for M by B]
A→B: #50 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? by A]

how can M hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “#50 Yes.”, signature intended for M by B) = 1

73

confusion about who’s sending?
in addition to nonces, either

write down more who is sending + other context so message can’t be
reused and/or
use unique set of keys for each principal you’re talking to

with symmetric encryption, also “reflection attacks”
A sends message to B, attacker sends A’s message back to A as if it’s
from B

74

other attacks without breaking math

75

TLS state machine attack
from https://mitls.org/pages/attacks/SMACK

protocol:
step 1: verify server identity
step 2: receive messages from server

attack:
if server sends “here’s your next message”,
instead of “here’s my identity”
then broken client ignores verifying server’s identity

76

https://mitls.org/pages/attacks/SMACK

Matrix vulnerabilties
one example from https://nebuchadnezzar-megolm.
github.io/static/paper.pdf

system for confidential multi-user chat

protocol + goals:
each device (my phone, my desktop) has public key
to talk to me, you verify one of my public keys
to add devices, my client can forward my other devices’ public keys

bug:
when receiving new keys, clients did not check who they were forwarded
from correctly

77

https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf

on the lab

78

getting public keys?
browser talking to websites
needs public keys of every single website?

not really feasible, but…

79

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

80

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

80

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

80

certificate authorities
websites (and others) go to certificates authorities with their public
key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

signed message called certificate

send certificates to browsers to verify identity

81

example web certificate (1)
Version: 3 (0x2)
Serial Number: 7b:df:f6:ae:2e:d7:db:74:d3:c5:77:ac:bc:44:bf:1b
Signature Algorithm: sha256WithRSAEncryption
Issuer:

countryName = US
stateOrProvinceName = MI
localityName = Ann Arbor
organizationName = Internet2
organizationalUnitName = InCommon
commonName = InCommon RSA Server CA

Validity
Not Before: Apr 25 00:00:00 2023 GMT
Not After : Apr 24 23:59:59 2024 GMT

Subject:
countryName = US
stateOrProvinceName = Virginia
organizationName = University of Virginia
commonName = canvas.its.virginia.edu

....
X509v3 extensions:

....
X509v3 Subject Alternative Name: DNS:canvas.its.virginia.edu

82

example web certificate (2)
....

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:f4:e4:d4:6c:
94:be:91:a8:6a:21:43:b2:d5:9a:48:b0:64:d9:f7:
f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:f6:46:4b:42:

....
Signature Algorithm: sha256WithRSAEncryption
Signature Value:

24:3a:67:c8:0d:ef:eb:8c:eb:ba:8f:d5:11:d2:1e:ea:44:eb:
fe:af:93:7d:d9:4a:2b:44:a3:7f:47:50:aa:d1:b3:9c:a8:a8:

....

83

certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority

so their public key, comes with my OS/browser?
not exactly…

they have their own certificate signed by “USERTrust RSA
Certification Authority”
and their public key comes with your OS/browser?

(but both CAs now operated by UK-based Sectigo)
84

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…

some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

85

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

85

how many trust anchors?
Mozilla Firefox (as of 27 Feb 2023)

155 trust anchors
operated by 55 distinct entities

Microsoft Windows (as of 27 Feb 2023)
237 trust anchors
operated by 86 distinct entities

86

public-key infrastructure
ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure”

several of these:
for verifying identity of websites
for verifying origin of domain name records (kind-of)
for verifying origin of applications in some OSes/app stores/etc.
for encrypted email in some organizations
…

87

exercise
exercise: how should website certificates verify identity?

88

how do certificate authorities verify
for web sites, set by CA/Browser Forum

organization of:
everyone who ships code with list of valid certificate authorities

Apple, Google, Microsoft, Mozilla, Opera, Cisco, Qihoo 360, Brave, …
certificate authorities

decide on rules (“baseline requirements”) for what CAs do

89

BR domain name identity validation
options involve CA choosing random value and:

sending it to domain contact (with domain registrar) and receive
response with it, or

observing it placed in DNS or website or sent from server in other
specific way

exercise: problems this doesn’t deal with?

90

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

91

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

91

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

91

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

91

additional crypto tools
cryptographic hash functions (summarize data)

‘secure’ random numbers

key agreement

92

motivation: summary for signature
digital signatures typically have size limit

…but we want to sign very large messages

solution: get secure “summary” of message

93

cryptographic hash
hash(M) = X

given X:
hard to find message other than by guessing

given X, M:
hard to find second message so that hash(second message) = X

example uses:
substitute for original message in digital signature
building message authentication codes

94

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

95

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

95

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

95

random numbers
need a lot of keys that no one else knows

common task: choose a random number

question: what does random mean here?

96

cryptographically secure random numbers
security properties we might want for random numbers:

attacker cannot guess (part of) number better than chance

knowing prior ‘random’ numbers shouldn’t help predict next
‘random’ numbers

compromising machine now shouldn’t reveal older random numbers

97

exercise: how to generate?

98

/dev/urandom
Linux kernel random number generator

collects “entropy” from hard-to-predict events
e.g. exact timing of I/O interrupts
e.g. some processor’s built-in random number circuit

turned into as many random bytes as you want

99

turning ‘entropy’ into random bytes
lots of ways to do this; one (rough/incomplete) idea:

internal variable state

to add ‘entropy’
state ← SecureHash(state + entropy)

to extract value:
random bytes ← SecureHash(1 + state)
give bytes that can’t be reversed to compute state

state ← SecureHash(2 + state)
change state so attacker can’t take us back to old state if compromised

100

just asymmetric?
given public-key encryption + digital signatures…

why bother with the symmetric stuff?

symmetric stuff much faster

symmetric stuff much better at supporting larger messages

101

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

102

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

102

Diffie-Hellman key agreement (2)
A and B want to agree on shared secret

A chooses random value Y

A sends public value derived from Y (“key share”)

B chooses random value Z

B sends public value derived from Z (“key share”)

A combines Y with public value from B to get number
B combines Z with public value from A to get number

and b/c of math chosen, both get same number
103

Diffie-Hellman key agreement (1)
math requirement:

some f , so f(f(X, Y), Z) = f(f(X, Z), Y)
(that’s hard to invert, etc.)

choose X in advance and:
A randomly chooses Y B randomly chooses Z
A sends f(X, Y) to B B sends f(X, Z) to A
A computes f(f(X, Z), Y) B computes f(f(X, Y), Z)

104

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y

PE(public key, message) =
generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

105

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

105

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, … 105

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

106

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

106

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

106

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

106

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

106

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

106

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

106

TLS: after handshake
use key shares results to get several keys

take hash(something + shared secret) to derive each key

separate keys for each direction (server → client and vice-versa)

often separate keys for encryption and MAC

later messages use encryption + MAC + nonces

107

things modern TLS usually does
(not all these properties provided by all TLS versions and modes)

confidentiality/authenticity
server = one ID’d by certificate
client = same throughout whole connection

forward secrecy
can’t decrypt old conversations (data for KeyShares is temporary)

fast
most communication done with more efficient symmetric ciphers
1 set of messages back and forth to setup connection

108

denial of service (1)
so far: worried about network attacker disrupting
confidentiality/authenticity

what if we’re just worried about just breaking things

well, if they control network, nothing we can do…

but often worried about less

109

denial of service (2)
if you just want to inconvenience…

attacker just sends lots of stuff to my server

my server becomes overloaded?

my network becomes overloaded?

but: doesn’t this require a lot of work for attacker?

exercise: why is this often not a big obstacle

110

denial of service: asymmetry
work for attacker > work for defender

how much computation per message?
complex search query?
something that needs tons of memory?
something that needs to read tons from disk?

how much sent back per message?

resources for attacker > resources of defender

how many machines can attacker use?

111

denial of service: reflection/amplification
instead of sending messages directly…attacker can send messages
“from” you to third-party

third-party sends back replies that overwhelm network

example: short DNS query with lots of things in response

“amplification” =
third-party inadvertantly turns small attack into big one

112

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

113

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

114

network security summary (1)
communicating securely with math

secret value (shared key, public key) that attacker can’t have
symmetric: shared keys used for (de)encryption + auth/verify; fast
asymmetric: public key used by any for encrypt + verify; slower
asymmetric: private key used by holder for decrypt + sign; slower

protocol attacks — repurposing encrypt/signed/etc. messages

certificates — verifiable forwarded public keys

key agreement — for generated shared-secret “in public”
publish key shares from private data
combine private data with key share for shared secret

115

network security summary (2)
TLS: combine all cryptography stuff to make “secure channel”

denial-of-service — attacker just disrupts/overloads (not subtle)

firewalls

116

backup slides

117

backup slides

118

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80

exercise: why include the Host there?

119

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80

exercise: why include the Host there?

119

URLs and HTTP (1)
http://www.foo.com:80/foo/bar?quux#q1

lookup IP address of www.foo.com

connect via TCP to port 80:
GET /foo/bar?quux HTTP/1.1
Host: www.foo.com:80
exercise: why include the Host there?

119

spoofing
if I only allow connections from my desktop’s IP addresses,
how would you attack this?

hint: how do we know what address messages come from?

120

link layer reliablity?
Ethernet + Wifi have checksums

Q1: Why doesn’t this give us uncorrupted messages?
Why do we still have checksums at the higher layers?

Q2: What’s a benefit of doing this if we’re also doing it in the
higher layer?

121

link layer quality of service
if frame gets…
event on Ethernet on WiFi
collides with another detected + may resend resend
not received lose silently resent
header corrupted usually discard silently usually resend
data corrupted usually discard silently usually resend
too long not allowed to send not allowed to send
reordered (v. other messages) received out of order received out of order
destination unknown lose silently usually resend??
too much being sent discard excess? discard excess?

122

network layer quality of service
if packet …
event on IPv4/v6
collides with another out of scope — handled by link layer
not received lost silently
header corrupted usually discarded silently
data corrupted received corrupted
too long dropped with notice or “fragmented” + recombined
reordered (v. other messages) received out of order
destination unknown usually dropped with notice
too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

123

network layer quality of service
if packet …
event on IPv4/v6
collides with another out of scope — handled by link layer
not received lost silently
header corrupted usually discarded silently
data corrupted received corrupted
too long dropped with notice or “fragmented” + recombined
reordered (v. other messages) received out of order
destination unknown usually dropped with notice
too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

123

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

124

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

125

t

126

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

126

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

127

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

128

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

129

‘connected’ UDP sockets
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
bind(fd, &my_addr, sizeof(my_addr))
struct sockaddr_in to_addr = ...;
connect(fd, &to_addr); /* set remote IP address + port */

/* doesn't actually communicate with remote address yet */
...
int count = write(fd, data, data_size);
// OR
int count = send(fd, data, data_size, 0 /* flags */);

/* single message -- sent ALL AT ONCE */

int count = read(fd, buffer, buffer_size);
// OR
int count = recv(fd, buffer, buffer_size, 0 /* flags */);

/* receives whole single message ALL AT ONCE */
130

UDP sockets on IPv4
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
if (0 != bind(fd, &my_addr, sizeof(my_addr)))

handle_error();
...
struct sockaddr_in to_addr = ...;

/* send a message to specific address */
int bytes_sent = sendto(fd, data, data_size, 0 /* flags */,

&to_addr, sizeof(to_addr));

struct sockaddr_in from_addr = ...;
/* receive a message + learn where it came from */

int bytes_recvd = recvfrom(fd, &buffer[0], buffer_size, 0,
&from_addr, sizeof(from_addr));

...

131

what about non-local machines?
when configuring network specify:

range of addresses to expect on local network
128.148.67.0-128.148.67.255 on my desktop
“netmask”

gateway machine to send to for things outside my local network
128.143.67.1 on my desktop
my desktop looks up the corresponding MAC address

132

routes on my desktop
$ /sbin/route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 128.143.67.1 0.0.0.0 UG 100 0 0 enp0s31f6
128.143.67.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s31f6
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 enp0s31f6

network configuration says:

(line 2) to get to 128.143.67.0–128.143.67.255, send directly on
local network

“genmask” is mask (for bitwise operations) to specify how big range is

(line 3) to get to 169.254.0.0–169.254.255.255, send directly on
local network
(line 1) to get anywhere else, use “gateway” 128.143.67.1 133

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

134

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

135

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

136

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

137

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

138

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

138

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

138

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

138

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

139

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

139

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

139

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

139

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

140

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

140

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

140

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

141

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

141

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

141

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

141

connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

142

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

143

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

143

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

143

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

143

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

143

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

144

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

144

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

144

connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

145

connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

145

connection setup: old lookup function
/* example hostname, portnum= "www.cs.virginia.edu", 443*/
const char *hostname; int portnum;
...
struct hostent *server_ip;
server_ip = gethostbyname(hostname);

if (server_ip == NULL) { /* handle error */ }

struct sockaddr_in addr;
addr.s_addr = *(struct in_addr*) server_ip−>h_addr_list[0];
addr.sin_port = htons(portnum);
sock_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sock_fd, &addr, sizeof(addr));
...

146

aside: on server port numbers
Unix convention: must be root to use ports 0–1023

root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

147

	DNS
	DNS: dig +trace
	exercise
	ARP / IPv6 ND
	routing addendum

	URLs and URIs

	DHCP and IPv6 autoconfig
	NAT
	lab API
	firewalls
	attackers and security properties
	security properties
	tools with shared keys
	secrets generally
	symmetric encryption
	motivation: need for authentication
	message authentication codes

	exercise
	motivation: distributing shared secrets?
	tools without shared keys
	asymmetric encryption
	digital signatures

	encryption + authentication pitfalls
	replay attacks
	other attacks

	on the lab
	certificate authorities
	how certificates verified

	preview: additional tools
	cryptographic hashes
	password hashing

	random numbers
	key agreement
	aside: key agreement to public key encrypt

	putting it together: TLS
	handshake
	after handshake
	TLS properties

	misc. security issues
	denial of service
	amplification example

	firewalls
	summary

	backup slides
	and HTTP? (exercise)
	spoofing?
	exercise: why resend?
	link layer quality-of-service
	network layer quality-of-service

	firewalls
	DIG trace
	UDP sockets
	ARP / IPv6 ND routing
	DNS: dig +trace
	example: echo client/server
	server setup
	client setup
	read/write code

	more normal connection setup
	other connection setup options

