

last time (1)

DNS time-to-lives and limited caching

mapping MAC addresses to IP addresses

if know IP should be on network, ask everyone “is this yours?”

DHCP: broadcast “what IP/etc. to use”

network address translation
large set of inside IP addresses
map to small set of outside IP addresses
table: (remote IP+port, outside IP+port) — inside IP+4port

last time (2)

security goals: confidentiality, authenticity

encryption
E(key, data) = ciphertext
cannot learn about data from ciphertext + E without key

message authentication codes

MAC(key, data) = tag
cannot find MAC(key, f(data)) without key
even with MAC(key, data), data

quiz Q1

1. A— A wifi router

2: A wifi router — B wifi router (via wired network)
3: B wifi router — B

+ again in reverse

= 6 messages

quiz Q2/3
frame addresses: machine on current network

packet address: ultimate (multi-step) destination

quiz Q4
connections at transport layer

unless we change transport layer
relies on being able to use network layer in same way

so need router-changing solution

quiz Q5
best scheme would be encrypt+auth with key 2 (not an option)

B allows confirming ‘guesses’ about message using MAC

C+D allow reading decrypted message

quiz Q6
best scheme would be encrypt+auth with key 2 (not an option)

B allows confirming ‘guesses’ about message using MAC

C+D allow reading decrypted message

anon feedback

“This course has the best TAs of any CS class | have taken so far,
they help you with the actual implementation as well as making
sure you fully understand the overarching concepts the homeworks
and coursework are supposed to teach you. They're really doing a
great job!”

“I have really enjoyed the labs in this course thus far. ..unlike all
other labs so far, the openmp lab left me feeling frustrated and
confused. The crux of the issue is the write-up's nebulous
connection between the parallel mapping and reduction stages.
Like, do you do them sequentially or together? | still don't know. |
think a fully worked-out example showing..."

hoped that pseudocode under first reduce strategy would help...

providing worked out examples probably means more complex problem

exercise
suppose A, B have shared keys K, Ky

assume attackers do not have keys

E/D = encrypt/decrypt function

A asks B to pay Sue $100 by sending message with these parts:
“2023-11-03: pay $100”
E(K7, “2023-11-03 Sue”)
MAC(K,,"2023-11-03 $100")

1. can eavesdropper learn: (a) who is being paid, (b) how much?

2. can machine-in-middle change: (a) who is being paid, (b) how
much?

10

shared secrets impractical

problem: shared secrets usually aren’t practical

need secure communication before | can do secure communication?

scaling problems

millions of websites x billions of browsers = how many keys?
hard to talk to new people

11

shared secrets impractical

problem: shared secrets usually aren’t practical

need secure communication before | can do secure communication?

scaling problems

millions of websites x billions of browsers = how many keys?
hard to talk to new people

11

shared secrets impractical

problem: shared secrets usually aren’t practical

need secure communication before | can do secure communication?

scaling problems

millions of websites x billions of browsers = how many keys?
hard to talk to new people

11

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren't talking to attacker

12

bootstrapping keys?
will still need to have some sort of secure communication to setup!
because we need some way to know we aren't talking to attacker

but...

12

bootstrapping keys?

will still need to have some sort of secure communication to setup!
because we need some way to know we aren't talking to attacker
but...

can be broadcast communication
don't need full new sets of keys for each web browser

12

bootstrapping keys?

will still need to have some sort of secure communication to setup!
because we need some way to know we aren't talking to attacker
but...

can be broadcast communication
don't need full new sets of keys for each web browser

only with smaller number of trusted authorities
don't need to have keys for every website in advance

12

asymmetric encryption

we'll have two functions:

encrypt: PFE(public key, message) = ciphertext
decrypt: PD(private key, ciphertext) = message

(public key, private key) = “key pair”

13

key pairs

‘private key' = kept secret
usually not shared with anyone

‘public key' = safe to give to everyone
usually some hard-to-reverse function of public key

concept will appear in some other cryptographic primitives

14

asymmetric encryption properties

functions:

encrypt: PFE(public key, message) = ciphertext
decrypt: PD(private key, ciphertext) = message

should have:
knowing PE, PD, the public key, and ciphertext shouldn't make it too
easy to find message
knowing PE, PD, the public key, ciphertext, and message shouldn't
help in finding private key

15

secrecy properties with asymmetric

not going to be able to make things as hard as “try every possibly
private key"

but going to make it impractical

like with symmetric encryption want to prevent recovery of any info
about message

also have some other attacks to worry about:
e.g. no info about key should be revealed based on our reactions to
decrypting maliciously chosen ciphertexts

16

using asymmetric v symmetric
both:

use secret data to generate key(s)

asymmetric (AKA public-key) encryption
one “keypair” per recipient
private key kept by recipient
public key sent to all potential senders
encryption is one-way without private key

symmetric encryption
one key per (recipient + sender)
secret key kept by recipient + sender
if you can encrypt, you can decrypt

17

using?
in advance: B generates private key + public key

in advance: B sends public key to A (and maybe others) securely

A computes PE(public key, ‘The secret formula is...") = *¥¥¥xxk

send on network:
A s B *rkkkkRK

B computes PD(private key, ¥*¥¥****) — “The secret formula is ...

18

digital signatures

symmetric encryption : asymetric encryption ::
message authentication codes : digital signatures

19

digital signatures

pair of functions:
sign: S(private key, message) = signature
verify: V' (public key, signature, message) = 1 ("yes, correct signature”)

(public key, private key) = key pair (similar to asymmetric
encryption)
public key can be shared with everyone
knowing S, V, public key, message, signature
doesn’'t make it too easy to find another message -+ signature so that
V (public key, other message, other signature) = 1

20

using?
in advance: A generates private key + public key

in advance: A sends public key to B (and maybe others) securely

A computes S(private key, ‘Please pay ...") = ¥¥kixx

send on network:
A — B: ‘Please pay ..., *¥¥kxdkx

B computes V (public key, ‘Please pay ..., *¥¥¥¥¥¥) — 1

21

tools, but...

have building blocks, but less than straightforward to use

lots of issues from using building blocks poorly

start of art solution: formal proof sytems

mathematical proof that attacker doing X implies encryption/MAC/etc.

broken
ideally a somewhat machine-checkable proof

(we aren’t going to be that formal...)

22

replay attacks

A—B: Did you order lunch? [signature 1 by A|
signature 1 by A = Sign(A's private signing key, “Did you order lunch?")
will check with Verify(A's public key, signature 1 by A, “Did you order
lunch?")

B—A: Yes. [signature 1 by B]
signature 1 by B = Sign(B'’s private key, "Yes.")
will check with Verify(B's public key, signature 1 by B, “Yes.")

A—B: Vegetarian? [signature 2 by A|
B—A: No, not this time. [signature 2 by B]

A—B: There's a guy at the door, says he's here to repair the AC.

Should | let him in? [signature N by A]
23

replay attacks

A—B: Did you order lunch? [signature 1 by A|
B—A: Yes. [signature 1 by B]

A—B: Vegetarian? [signature 2 by A]

B—A: No, not this time. [signature 2 by B]

A—B: There's a guy at the door, says he's here to repair the AC.

Should | let him in? [signature ? by A]

how can attacker hijack the reponse to A’s inquiry?

24

replay attacks

A—B: Did you order lunch? [signature 1 by A|
B—A: Yes. [signature 1 by B]

A—B: Vegetarian? [signature 2 by A]

B—A: No, not this time. [signature 2 by B]

A—B: There's a guy at the door, says he's here to repair the AC.

Should | let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry?
as an attacker, | can copy/paste B's earlier message!

just keep the same signature, so it can be verified!
Verify(B's public key, “Yes.", signature 2 from B) = 1

24

nonces (1)
one solution to replay attacks:

A—B: #1 Did you order lunch? [signature 1 from A]
signature from A = Sign(A’s private key, “#1 Did you order lunch?")

B—A: #1 Yes. [signature 1 from B]
A—B: #2 Vegetarian? [signature 2 from A]
B—A: #2 No, not this time. [signature 2 from B]

A—B: #54 There's a guy at the door, says he's here to repair the
AC. Should I let him in? [signature ? from A]

(assuming A actually checks the numbers)

25

nonces (2)
another solution to replay attacks:

B—A: [next number #91523] [signature from B]

A—B: #91523 Did you order lunch? [next number #90382]
[signature from A]

B—A: #90382 Yes. [next number #14578] [signature from B]

A—B: #6824 There's a guy at the door, says he's here to repair

the AC. Should | let him in? [next number #36129][signature from
Al

(assuming A actually checks the numbers)

26

replay attacks (alt)

M—B: #50 Did you order lunch? [signature by M]
B—M: #50 Yes. [signature intended for M by B]

A—B: #50 There's a guy at the door, says he's here to repair the
AC. Should | let him in? [signature ? by A]

how can M hijack the reponse to A's inquiry?

27

replay attacks (alt)

M—B: #50 Did you order lunch? [signature by M]
B—M: #50 Yes. [signature intended for M by B]

A—B: #50 There's a guy at the door, says he's here to repair the
AC. Should | let him in? [signature ? by A]

how can M hijack the reponse to A's inquiry?

as an attacker, | can copy/paste B's earlier message!

just keep the same signature, so it can be verified!
Verify(B's public key, “#50 Yes.", signature intended for M by B) = 1

27

confusion about who’s sending?

in addition to nonces, either

write down more who is sending + other context so message can't be
reused and/or
use unique set of keys for each principal you're talking to

with symmetric encryption, also “reflection attacks”

A sends message to B, attacker sends A's message back to A as if it's
from B

28

other attacks without breaking math

29

TLS state machine attack
from https://mitls.org/pages/attacks/SMACK

protocol:

step 1: verify server identity
step 2: receive messages from server

attack:
if server sends “here’s your next message”,
instead of “here’s my identity”
then broken client ignores verifying server’s identity

30

https://mitls.org/pages/attacks/SMACK

Matrix vulnerabilties

one example from https://nebuchadnezzar-megolm.
github.io/static/paper.pdf

system for confidential multi-user chat

protocol + goals:

each device (my phone, my desktop) has public key
to talk to me, you verify one of my public keys
to add devices, my client can forward my other devices' public keys

bug:
when receiving new keys, clients did not check who they were forwarded
from correctly
31

https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf

on the lab

32

getting public keys?

browser talking to websites
needs public keys of every single website?

not really feasible, but...

33

certificate idea
let's say A has B’s public key already.

if C wants B’s public key and knows A's already:

A can generate “certificate” for B:

“B’s public key is XXX" AND
Sign(A's private key, “B’s public key is XXX")

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B's public key

if C does not trust A, well, can't trust this either

34

certificate idea
let's say A has B’s public key already.

if C wants B’s public key and knows A's already:

A can generate “certificate” for B:

“B’s public key is XXX" AND
Sign(A's private key, “B’s public key is XXX")

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B's public key

if C does not trust A, well, can't trust this either

34

certificate idea
let's say A has B’s public key already.

if C wants B’s public key and knows A's already:

A can generate “certificate” for B:

“B’s public key is XXX" AND
Sign(A's private key, “B’s public key is XXX")

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B's public key

if C does not trust A, well, can't trust this either

34

certificate authorities

websites (and others) go to certificates authorities (CA) with their
public key

certificate authorities sign messages like:
“The public key for foo.com is XXX."

signed message called certificate

send certificates to browsers to verify identity
website can forward certificate instead of browser contacting CA directly

35

certificate authorities

websites (and others) go to certificates authorities (CA) with their
public key

certificate authorities sign messages like:
“The public key for foo.com is XXX."

signed message called certificate

send certificates to browsers to verify identity
website can forward certificate instead of browser contacting CA directly

35

example web certificate (1)

Version: 3 (0x2)
Serial Number: 7b:df:f6:ae:2e:d7:db:74:d3:c5:77:ac:bc:44:bf:1b
Signature Algorithm: sha256WithRSAEncryption

Issuer:
countryName = Us
stateOrProvinceName = MI
localityName = Ann Arbor
organizationName = Internet2
organizationalUnitName = InCommon
commonName = InCommon RSA Server CA
Validity

Not Before: Apr 25 00:00:00 2023 GMT
Not After : Apr 24 23:59:59 2024 GMT

Subject:
countryName = US
stateOrProvinceName = Virginia
organizationName = University of Virginia
commonName = canvas.its.virginia.edu

X509v3 extensions:

X509v3 Subject Alternative Name: DNS:canvas.its.virginia.edu

36

example web certificate (2)

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Signature
Signature
24:3a
fe:af

RSA Public-Key: (2048 bit)
Modulus:

00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:
94:be:91:a8:6a:21:43:b2:d5:9a:48:
f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:

Algorithm: sha256WithRSAEncryption
Value:

:67:c8:0d:ef:eb:8c:eb:ba:8f:d5:11:d2:1e:
:93:7d:d9:4a:2b:44:a3:7f:47:50:aa:d1:b3:

fa.
bo:
f6:

ea

9c:

e4:

64

46:

144:
a8:

d4:6c:
:d9:f7:
4b:42:

eb:
a8:

37

certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority

so their public key, comes with my OS/browser?
not exactly...

they have their own certificate signed by “USERTrust RSA
Certification Authority”

and their public key comes with your OS/browser?

(but both CAs now operated by UK-based Sectigo)

38

certificate hierarchy

USERTrust RSA

Certification Authority

originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)

Comodo's CA division renamed Sectlgo 2018)

RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

~

collab.its.virginia.edu

GlobalSign Root CA

operated by GlobalSign nv-sa

subsid. of GMO Internet Group since 2007

VAN
GTS Root R1

operated by Google Trust Services LLC

InCommon \

GTS CA 1C3

~

www.google.com

\ s

39

certificate hierarchy

USERTrust RSA
Certification Authority ‘Globa|Sign Root CA ‘

originally operated by USERTrust, Inc. operated by GlobalSign nv-sa
acquired by Comodo, Inc (2004) subsid. of GMO Internet Group since 2007

Comodo’s CA division renamed Sectlgo (2018)

/ * GTS Root R1
inCommon 15.\

RSA Server CA

operated by Sectigo
on behalf of the Internet2 (not-for-profit) GTS CA 1C3
o | N |

some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

N

how many trust anchors?

Mozilla Firefox (as of 27 Feb 2023)

155 trust anchors
operated by 55 distinct entities

Microsoft Windows (as of 27 Feb 2023)

237 trust anchors
operated by 86 distinct entities

40

public-key infrastructure

ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure”

several of these:

for verifying identity of websites
for verifying origin of domain name records (kind-of)

for verifying origin of applications in some OSes/app stores/etc.

for encrypted email in some organizations

41

exercise

exercise: how should website certificates verify identity?

42

how do certificate authorities verify

for web sites, set by CA/Browser Forum

organization of:
everyone who ships code with list of valid certificate authorities
Apple, Google, Microsoft, Mozilla, Opera, Cisco, Qihoo 360, Brave, ..

certificate authorities

decide on rules (“baseline requirements”) for what CAs do

43

BR domain name identity validation

options involve CA choosing random value and:

sending it to domain contact (with domain registrar) and receive
response with it, or

observing it placed in DNS or website or sent from server in other
specific way

exercise: problems this doesn’t deal with?

44

some other things public CAs do

keep their private keys in tamper-resistant hardware

maintain publicly-accessible database of revoked certificates
some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate

infrastructure for signing domain name records) when looking this up)

45

some other things public CAs do
keep their private keys in tamper-resistant hardware

maintain publicly-accessible database of revoked certificates
some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate

infrastructure for signing domain name records) when looking this up)

45

some other things public CAs do

keep their private keys in tamper-resistant hardware

maintain publicly-accessible database of revoked certificates
some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate

infrastructure for signing domain name records) when looking this up)

45

some other things public CAs do

keep their private keys in tamper-resistant hardware

maintain publicly-accessible database of revoked certificates
some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate

infrastructure for signing domain name records) when looking this up)

45

backup slides

46

cryptographic hash uses

find shorter ‘summary’ to substitute for data

what hashtables use them for, but...
we care that adversaries can't cause collisions!

47

cryptographic hash uses

find shorter ‘summary’ to substitute for data

what hashtables use them for, but...
we care that adversaries can't cause collisions!

deal with message limits in signatures/etc.

password hashing — but be careful! [next slide]

constructing message authentication codes
hash message + secret info (+ some other details)

47

	exercise
	motivation: distributing shared secrets?
	tools without shared keys
	asymmetric encryption
	digital signatures

	encryption + authentication pitfalls
	replay attacks
	other attacks

	on the lab
	certificate authorities
	how certificates verified

	backup slides

