
1

last time
private keys (never shared)

public keys (known to all, derived from private keys)

public-key encryption (encrypt w/ public, decrypt w/ private)

digital signatures (verify w/ public, sign w/ private)

certificate idea:
“X’s public key is …” message + signature
signature from trusted ‘certificate authority’

chains of certificates

2

encryption/authentication
common to see symmetric “authenticated encryption”

usually combines malleable encryption (confidentiality) and MAC
(authenticity)
sometimes this is just called “encryption”

(but often encryption is missing authenticity)

if you take crypto theory course,
more mathematically definite ideas than
confidentiality/authenticity…

(e.g. ‘indistinguishably under chosen plaintext attack’)
(and some definitions overlap confidentiality/authenticity ideas)

3

exercise
exercise: how should website certificates verify identity?

4

how do certificate authorities verify
for web sites, set by CA/Browser Forum

organization of:
everyone who ships code with list of valid certificate authorities

Apple, Google, Microsoft, Mozilla, Opera, Cisco, Qihoo 360, Brave, …
certificate authorities

decide on rules (“baseline requirements”) for what CAs do

5

BR domain name identity validation
options involve CA choosing random value and:

sending it to domain contact (with domain registrar) and receive
response with it, or

observing it placed in DNS or website or sent from server in other
specific way

exercise: problems this doesn’t deal with?

6

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

7

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

7

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

7

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

7

additional crypto tools
cryptographic hash functions (summarize data)

‘secure’ random numbers

key agreement

8

motivation: summary for signature
digital signatures typically have size limit

…but we want to sign very large messages

solution: get secure “summary” of message

9

cryptographic hash
hash(M) = X

given X:
hard to find message other than by guessing

given X, M:
hard to find second message so that hash(second message) = X

example uses:
substitute for original message in digital signature
building message authentication codes

10

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

11

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

11

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

11

random numbers
need a lot of keys that no one else knows

common task: choose a random number

question: what does random mean here?

12

cryptographically secure random numbers
security properties we might want for random numbers:

attacker cannot guess (part of) number better than chance

knowing prior ‘random’ numbers shouldn’t help predict next
‘random’ numbers

compromising machine now shouldn’t reveal older random numbers

13

exercise: how to generate?

14

/dev/urandom
Linux kernel random number generator

collects “entropy” from hard-to-predict events
e.g. exact timing of I/O interrupts
e.g. some processor’s built-in random number circuit

turned into as many random bytes as you want

15

turning ‘entropy’ into random bytes
lots of ways to do this; one (rough/incomplete) idea:

internal variable state

to add ‘entropy’
state ← SecureHash(state + entropy)

to extract value:
random bytes ← SecureHash(1 + state)
give bytes that can’t be reversed to compute state

state ← SecureHash(2 + state)
change state so attacker can’t take us back to old state if compromised

16

just asymmetric?
given public-key encryption + digital signatures…

why bother with the symmetric stuff?

symmetric stuff much faster

symmetric stuff much better at supporting larger messages

17

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

18

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

18

Diffie-Hellman key agreement (1)
A and B want to agree on shared secret

A chooses random value Y

A sends public value derived from Y (“key share”)

B chooses random value Z

B sends public value derived from Z (“key share”)

A combines Y with public value from B to get number
B combines Z with public value from A to get number

and b/c of math chosen, both get same number
19

Diffie-Hellman key agreement (2)
math requirement:

some f , so f(f(X, Y), Z) = f(f(X, Z), Y)
(that’s hard to invert, etc.)

choose X in advance and:
A randomly chooses Y B randomly chooses Z
A sends f(X, Y) to B B sends f(X, Z) to A
A computes f(f(X, Z), Y) B computes f(f(X, Y), Z)

20

Diffie-Hellman key agreement (2)
math requirement:

some f , so f(f(X, Y), Z) = f(f(X, Z), Y)
(that’s hard to invert, etc.)

choose X in advance and:
A randomly chooses Y B randomly chooses Z
A sends f(X, Y) to B B sends f(X, Z) to A
A computes f(f(X, Z), Y) B computes f(f(X, Y), Z)

example

f(a, b) = ab (mod p)

20

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

21

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

21

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

21

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

21

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

21

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

21

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

21

TLS: after handshake
use key shares results to get several keys

take hash(something + shared secret) to derive each key

separate keys for each direction (server → client and vice-versa)

often separate keys for encryption and MAC

later messages use encryption + MAC + nonces

22

things modern TLS usually does
(not all these properties provided by all TLS versions and modes)

confidentiality/authenticity
server = one ID’d by certificate
client = same throughout whole connection

forward secrecy
can’t decrypt old conversations (data for KeyShares is temporary)

fast
most communication done with more efficient symmetric ciphers
1 set of messages back and forth to setup connection

23

network security summary (1)
communicating securely with math

secret value (shared key, public key) that attacker can’t have
symmetric: shared keys used for (de)encryption + auth/verify; fast
asymmetric: public key used by any for encrypt + verify; slower
asymmetric: private key used by holder for decrypt + sign; slower

protocol attacks — repurposing encrypt/signed/etc. messages

certificates — verifiable forwarded public keys

key agreement — for generated shared-secret “in public”
publish key shares from private data
combine private data with key share for shared secret

24

network security summary (2)
TLS: combine all cryptography stuff to make “secure channel”

(things we probably didn’t get to:)

denial-of-service — attacker just disrupts/overloads (not subtle)

firewalls

25

simple CPU

PC I$

+ instr
len

register
file

math

D$

read

write

26

running instructions

PC I$

+ instr
len

register
file

math

D$

read

write

0x100: addq %r8, %r9
0x108: movq 0x1234(%r10), %r11

…
%r8: 0x800
%r9: 0x900
%r10: 0x1000
%r11: 0x1100
…

0x100

0x108

8
9

0x800
0x900

0x11000x108

0x110

10 0x1000 0x2234

M[0x2234]

27

running instructions

PC I$

+ instr
len

register
file

math

D$

read

write

0x100: addq %r8, %r9
0x108: movq 0x1234(%r10), %r11

…
%r8: 0x800
%r9: 0x1100
%r10: 0x1000
%r11: 0x1100
…

0x100

0x108

8
9

0x800
0x900

0x1100

0x108

0x110

10 0x1000 0x2234

M[0x2234]

27

running instructions

PC I$

+ instr
len

register
file

math

D$

read

write

0x100: addq %r8, %r9
0x108: movq 0x1234(%r10), %r11

…
%r8: 0x800
%r9: 0x1100
%r10: 0x1000
%r11: M[0x2234]
…

0x100

0x108

8
9

0x800
0x900

0x1100

0x108

0x110

10 0x1000 0x2234

M[0x2234]

27

Human pipeline: laundry

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

28

Human pipeline: laundry

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets
28

Waste (1)

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

wasted time!wasted time!

29

Waste (1)

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

wasted time!wasted time!

29

Waste (2)

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

30

Latency — Time for One

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

pipelined latency (2.1 h)

colors colors colors

normal latency (1.8 h)

31

Latency — Time for One

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

pipelined latency (2.1 h)

colors colors colors

normal latency (1.8 h)

31

Latency — Time for One

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

pipelined latency (2.1 h)

colors colors colors

normal latency (1.8 h)

31

Throughput — Rate of Many

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

time between finishes (0.83 h)

1 load
0.83h = 1.2 loads/h

time between starts (0.83 h)

32

Throughput — Rate of Many

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

time between finishes (0.83 h)

1 load
0.83h = 1.2 loads/h

time between starts (0.83 h)

32

Throughput — Rate of Many

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

time between finishes (0.83 h)

1 load
0.83h = 1.2 loads/h

time between starts (0.83 h)

32

adding stages (one way)

PC I$

+ instr
len

register
file

math

D$

read

write

divide running instruction into steps
one way: fetch / decode / execute / memory / writeback

add ‘pipeline registers’ to hold values from instruction

fetch decode execute memory

writeback

33

adding stages (one way)

PC I$

+ instr
len

register
file

math

D$

read

write

divide running instruction into steps
one way: fetch / decode / execute / memory / writeback

add ‘pipeline registers’ to hold values from instruction

fetch decode execute memory

writeback

33

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writeback

cycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

34

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

34

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

34

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

34

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

34

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

34

why registers?
example: fetch/decode

need to store current instruction somewhere …while fetching next
one

35

exercise: throughput/latency (1)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

suppose cycle time is 500 ps
exercise: latency of one instruction?
A. 100 ps B. 500 ps C. 2000 ps D. 2500 ps E. something else

exercise: throughput overall?
A. 1 instr/100 ps B. 1 instr/500 ps C. 1 instr/2000ps D. 1 instr/2500 ps
E. something else

36

exercise: throughput/latency (1)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

suppose cycle time is 500 ps
exercise: latency of one instruction?
A. 100 ps B. 500 ps C. 2000 ps D. 2500 ps E. something else

exercise: throughput overall?
A. 1 instr/100 ps B. 1 instr/500 ps C. 1 instr/2000ps D. 1 instr/2500 ps
E. something else 36

exercise: throughput/latency (2)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

cycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F1F2D1D2E1E2M1M2W1W2
0x108: mov 0x1234(%r10), %r11 F1F2D1D2E1E2M1M2W1W2
0x110: … …

double number of pipeline stages (to 10) + decrease cycle time
from 500 ps to 250 ps — throughput?
A. 1 instr/100 ps B. 1 instr/250 ps C. 1 instr/1000ps D. 1 instr/5000 ps
E. something else

37

backup slides

38

denial of service (1)
so far: worried about network attacker disrupting
confidentiality/authenticity

what if we’re just worried about just breaking things

well, if they control network, nothing we can do…

but often worried about less

39

denial of service (2)
if you just want to inconvenience…

attacker just sends lots of stuff to my server

my server becomes overloaded?

my network becomes overloaded?

but: doesn’t this require a lot of work for attacker?

exercise: why is this often not a big obstacle

40

denial of service: asymmetry
work for attacker > work for defender

how much computation per message?
complex search query?
something that needs tons of memory?
something that needs to read tons from disk?

how much sent back per message?

resources for attacker > resources of defender

how many machines can attacker use?

41

denial of service: reflection/amplification
instead of sending messages directly…attacker can send messages
“from” you to third-party

third-party sends back replies that overwhelm network

example: short DNS query with lots of things in response

“amplification” =
third-party inadvertantly turns small attack into big one

42

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

43

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

44

getting public keys?
browser talking to websites
needs public keys of every single website?

not really feasible, but…

45

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

46

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

46

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

46

certificate authorities
websites (and others) go to certificates authorities (CA) with their
public key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

signed message called certificate

send certificates to browsers to verify identity
website can forward certificate instead of browser contacting CA directly

47

certificate authorities
websites (and others) go to certificates authorities (CA) with their
public key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

signed message called certificate

send certificates to browsers to verify identity
website can forward certificate instead of browser contacting CA directly

47

example web certificate (1)
Version: 3 (0x2)
Serial Number: 7b:df:f6:ae:2e:d7:db:74:d3:c5:77:ac:bc:44:bf:1b
Signature Algorithm: sha256WithRSAEncryption
Issuer:

countryName = US
stateOrProvinceName = MI
localityName = Ann Arbor
organizationName = Internet2
organizationalUnitName = InCommon
commonName = InCommon RSA Server CA

Validity
Not Before: Apr 25 00:00:00 2023 GMT
Not After : Apr 24 23:59:59 2024 GMT

Subject:
countryName = US
stateOrProvinceName = Virginia
organizationName = University of Virginia
commonName = canvas.its.virginia.edu

....
X509v3 extensions:

....
X509v3 Subject Alternative Name: DNS:canvas.its.virginia.edu

48

example web certificate (2)
....

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:f4:e4:d4:6c:
94:be:91:a8:6a:21:43:b2:d5:9a:48:b0:64:d9:f7:
f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:f6:46:4b:42:

....
Signature Algorithm: sha256WithRSAEncryption
Signature Value:

24:3a:67:c8:0d:ef:eb:8c:eb:ba:8f:d5:11:d2:1e:ea:44:eb:
fe:af:93:7d:d9:4a:2b:44:a3:7f:47:50:aa:d1:b3:9c:a8:a8:

....

49

certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority

so their public key, comes with my OS/browser?
not exactly…

they have their own certificate signed by “USERTrust RSA
Certification Authority”
and their public key comes with your OS/browser?

(but both CAs now operated by UK-based Sectigo)
50

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…

some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

51

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

51

how many trust anchors?
Mozilla Firefox (as of 27 Feb 2023)

155 trust anchors
operated by 55 distinct entities

Microsoft Windows (as of 27 Feb 2023)
237 trust anchors
operated by 86 distinct entities

52

public-key infrastructure
ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure”

several of these:
for verifying identity of websites
for verifying origin of domain name records (kind-of)
for verifying origin of applications in some OSes/app stores/etc.
for encrypted email in some organizations
…

53

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y

PE(public key, message) =
generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

54

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

54

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, … 54

exercise: forwarding paths (2)
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9
subq %r8, %r9
ret (goes to andq)
andq %r10, %r9

in subq, %r8 is addq.
in subq, %r9 is addq.
in andq, %r9 is subq.
in andq, %r9 is addq.

A: not forwarded from
B-D: forwarded to decode from {execute,memory,writeback} stage of 55

	how certificates verified
	preview: additional tools
	cryptographic hashes
	password hashing

	random numbers
	key agreement
	putting it together: TLS
	handshake
	after handshake
	TLS properties

	misc. security issues
	summary

	review: single-cycle proccesor
	pipelining idea
	laundry idea
	applying to single-cycle processor
	exercise: throughput/latency

	backup slides
	denial of service
	amplification example

	firewalls
	aside: key agreement to public key encrypt
	alt exercise

