
pipelining 2

1



last time
cryptographic hashes

impractical to find values with particular hash
suitable summary for signatures

asymmetric key agreement
specialized protocol (even though not strictly needed)
private data → key share
my key share mixed with their private data = our key

TLS — asymmetric to do symmetric + certificates

pipelining
divide into steps
instr. 2 starts step A when instr. 1 starts step B
instr. 3 starts step A when instr. 2 starts step B
etc.

2



anonymous feedback (1)
“Can the TA Office Hour Queue actually be a queue and be first
come first serve? It is very frustrating to be at office hours (one of
the first people there) and then have people essentially cut you in
line because (as a TA explained - the queue prioritizes people who
have not gone to office hours before).”

3



anonymous feedback (2)
“I really like the analogy you used at the end of last class with the
washing machine. For a student like me who doesn’t always
intuitively get the examples/motivation behind what you speak
about in class, the analogy really helped me understand the
purpose of overlapping steps and the terminology such as latency
and throughput.”

that analogy’s courtesy of Patterson and Hennessy, Computer
Organiztion and Design

4



anonymous feedback (3)
“I’ve gone to almost every lecture this semester and I felt a lot less
prepared for the quiz questions on the secure channels unit than
the other units. Not sure if the quiz was harder than others or the
lecture was just harder for me to understand, but either way I think
the lectures on this unit should be slowed down a bit in general,
and in particular spend more time comparing and contrasting
different security methods/attack types and include more diagrams
illustrating exchanges of messages and keys.”

5



quiz Q1 (0a)
student → registrar

no protection (attacker can know/replace)
name (copy also public-key encrypted, but attacker can still replace)
number of items in list of requested courses

hashed + signed (attacker can check guesses but cannot
replace/add)

course identities being registered for (copy also public-key encrypted,
but attacker can still replace)

public-key encrypted (attacker cannot read, but can replace)
course section requested

6



quiz Q1 (0b)
registrar → student

signed (attacker cannot replace)
name (known from other direction of protocol)
time

public-key encrypted (attacker can replace)
list of courses registered for

7



quiz Q1 (1)
re: authenticity

attacker can’t forge signatures, but…
student signature only over identity of course (not section)
registrar signature only over open time + name

yes C: tamper message to omit classes

no D: cannot get student signature

yes E: signature doesn’t protect section requested

yes F+G: can make up own list of courses, encrypt to student
8



quiz Q1 (2)
re: confidentiality

section encrypted to registrar, course numbers not

yes A, no B

9



quiz Q2
A: dropped — only one certificate authority actually verifies public
key in chain, but can use information about different certificate
authorities in chain

B+C: chain is bigger than if we just had trusted cert verify directly

D: can only have top-level certificate authorities, using chain to fill
in

E: can trust certificate authority to to tell use to trust other
certificate authority without persistently remembering other
certificate authorities

10



quiz Q3
A: A can see that B successfully decrypted, so B got A’s message
somehow (even if in different context)

C: protocol has B decrypting arbitrary ‘key’ (encrypted to B) and
sending it back

B has no way of knowing it is key versus something else (without
additional steps)

D: A can reuse old message

E: B’s reply needs to correspond to A’s message

11



quiz Q4
0 1 2 3 4 5 6

A X X X X
B X X X X
C X X X X

12



quiz Q5
1000 + 7 stages total because of overlap

easily less than 1500 ns

13



exercise: throughput/latency (1)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

suppose cycle time is 500 ps
exercise: latency of one instruction?
A. 100 ps B. 500 ps C. 2000 ps D. 2500 ps E. something else

exercise: throughput overall?
A. 1 instr/100 ps B. 1 instr/500 ps C. 1 instr/2000ps D. 1 instr/2500 ps
E. something else

14



exercise: throughput/latency (1)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

suppose cycle time is 500 ps
exercise: latency of one instruction?
A. 100 ps B. 500 ps C. 2000 ps D. 2500 ps E. something else

exercise: throughput overall?
A. 1 instr/100 ps B. 1 instr/500 ps C. 1 instr/2000ps D. 1 instr/2500 ps
E. something else 14



exercise: throughput/latency (2)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

cycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F1F2D1D2E1E2M1M2W1W2
0x108: mov 0x1234(%r10), %r11 F1F2D1D2E1E2M1M2W1W2
0x110: … …

double number of pipeline stages (to 10) + decrease cycle time
from 500 ps to 250 ps — throughput?
A. 1 instr/100 ps B. 1 instr/250 ps C. 1 instr/1000ps D. 1 instr/5000 ps
E. something else

15



diminishing returns: register delays
logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

50 ps

60 ps
per cycle

10 ps

logic (2/2)

50 ps 10 ps

logic (1/3)

33 ps

43 ps
per cycle

10 ps

logic (2/3)

33 ps 10 ps

logic (3/3)

33 ps 10 ps
... ... ... ...

1 ps

11 ps
per cycle

10 ps 1 ps 10 ps 1 ps 10 ps 1 ps 10 ps

…
17



diminishing returns: register delays

2 4 6 8 10 12 140
20
40
60
80

100
120

number of stages

tim
e

pe
rc

om
pl

et
io

n
(p

s)

18



diminishing returns: register delays

2 4 6 8 10 12 140
20
40
60
80

100
120

register delay

number of stages

tim
e

pe
rc

om
pl

et
io

n
(p

s)

18



diminishing returns: register delays

2 4 6 8 10 12 140
20
40
60
80

100
120

register delay

1.83x speedup

1.02x speedup

number of stages

tim
e

pe
rc

om
pl

et
io

n
(p

s)

18



diminishing returns: register delays

2 4 6 8 10 12 140

20

40

60

80

100

1.83x throughput

1.02x throughput

number of stages

th
ro

ug
hp

ut
(o

ps
/n

s)

19



diminishing returns: register delays

2 4 6 8 10 12 140

20

40

60

80

100

1.83x throughput

1.02x throughput

max. rate of register updates

number of stages

th
ro

ug
hp

ut
(o

ps
/n

s)

19



diminishing returns: uneven split
Can we split up some logic (e.g. adder) arbitrarily?
Probably not...

logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

60 ps

70 ps
per cycle

10 ps

logic (2/2)

45 ps 10 ps

logic
(1/3)

40 ps

50 ps
per cycle

10 ps

logic
(2/3)

40 ps 10 ps

logic
(3/3)

30 ps 10 ps
... ... ... ... 20



diminishing returns: uneven split
Can we split up some logic (e.g. adder) arbitrarily?
Probably not...

logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

60 ps

70 ps
per cycle

10 ps

logic (2/2)

45 ps 10 ps

logic
(1/3)

40 ps

50 ps
per cycle

10 ps

logic
(2/3)

40 ps 10 ps

logic
(3/3)

30 ps 10 ps
... ... ... ... 20



diminishing returns: uneven split
Can we split up some logic (e.g. adder) arbitrarily?
Probably not...

logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

60 ps

70 ps
per cycle

10 ps

logic (2/2)

45 ps 10 ps

logic
(1/3)

40 ps

50 ps
per cycle

10 ps

logic
(2/3)

40 ps 10 ps

logic
(3/3)

30 ps 10 ps
... ... ... ... 20



a data hazard
PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writeback

// initially %r8 = 800,
// %r9 = 900, etc.
addq %r8, %r9 // R8 + R9 -> R9
addq %r9, %r8 // R9 + R8 -> R9
addq ...
addq ...

fetch rA rB R[rA] R[rB] rB sum rB sum rB
cycle PC rA rB R[rB] R[rB] rB sum rB sum rB
0 0x0
1 0x2 8 9
2 9 8 800 900 9
3 900 800 8 1700 9
4 1700 8 1700 9
5 1700 8

fetch/decode decode/execute execute/memory memory/writeback

should be 1700

21



a data hazard
PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writeback

// initially %r8 = 800,
// %r9 = 900, etc.
addq %r8, %r9 // R8 + R9 -> R9
addq %r9, %r8 // R9 + R8 -> R9
addq ...
addq ...

fetch rA rB R[rA] R[rB] rB sum rB sum rB
cycle PC rA rB R[rB] R[rB] rB sum rB sum rB
0 0x0
1 0x2 8 9
2 9 8 800 900 9
3 900 800 8 1700 9
4 1700 8 1700 9
5 1700 8

fetch/decode decode/execute execute/memory memory/writeback

should be 1700
21



data hazard
addq %r8, %r9 // (1)
addq %r9, %r8 // (2)

step# pipeline implementation ISA specification
1 read r8, r9 for (1) read r8, r9 for (1)
2 read r9, r8 for (2) write r9 for (1)
3 write r9 for (1) read r9, r8 for (2)
4 write r8 for (2) write r8 ror (2)

pipeline reads older value…

instead of value ISA says was just written
22



data hazard compiler solution
addq %r8, %r9
nop
nop
addq %r9, %r8

one solution: change the ISA
all addqs take effect three instructions later
(assuming can read register value while it is being written back)

make it compiler’s job

problem: recompile everytime processor changes?

23



data hazard compiler solution
addq %r8, %r9
nop
nop
addq %r9, %r8

one solution: change the ISA
all addqs take effect three instructions later
(assuming can read register value while it is being written back)

make it compiler’s job

problem: recompile everytime processor changes?

23



stalling/nop pipeline diagram (1)
cycle # 0 1 2 3 4 5 6 7 8

add %r8, %r9 F D E M W
nop F D E M W
nop F D E M W
addq %r9, %r8 F D E M W

assumption:
if writing register value
register file will return that value for reads

not actually way register file worked in single-cycle CPU
(e.g. can read old %r9 while writing new %r9)

24



stalling/nop pipeline diagram (1)
cycle # 0 1 2 3 4 5 6 7 8

add %r8, %r9 F D E M W
nop F D E M W
nop F D E M W
addq %r9, %r8 F D E M W

assumption:
if writing register value
register file will return that value for reads

not actually way register file worked in single-cycle CPU
(e.g. can read old %r9 while writing new %r9)

24



stalling/nop pipeline diagram (2)
cycle # 0 1 2 3 4 5 6 7 8

add %r8, %r9 F D E M W
nop F D E M W
nop F D E M W
nop F D E M W
addq %r9, %r8 F D E M W

if we didn’t modify the register file, we’d need an extra cycle

25



stalling/nop pipeline diagram (2)
cycle # 0 1 2 3 4 5 6 7 8

add %r8, %r9 F D E M W
nop F D E M W
nop F D E M W
nop F D E M W
addq %r9, %r8 F D E M W

if we didn’t modify the register file, we’d need an extra cycle

25



data hazard hardware solution
addq %r8, %r9
// hardware inserts: nop
// hardware inserts: nop
addq %r9, %r8

how about hardware add nops?

called stalling

extra logic:
sometimes don’t change PC
sometimes put do-nothing values in pipeline registers

26



opportunity
// initially %r8 = 800,
// %r9 = 900, etc.
0x0: addq %r8, %r9
0x2: addq %r9, %r8
...

fetch rA rB R[rA] R[rB] rB sum rB sum rB
cycle PC rA rB R[rB R[rB] rB sum rB sum rB
0 0x0
1 0x2 8 9
2 9 8 800 900 9
3 900 800 8 1700 9
4 1700 8 1700 9
5 1700 8

fetch/decode decode/execute execute/memory memory/writeback

should be 1700

27



exploiting the opportunity

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writeback

MUX

28



exploiting the opportunity

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackMUX

28



opportunity 2
// initially %r8 = 800,
// %r9 = 900, etc.
0x0: addq %r8, %r9
0x2: nop
0x3: addq %r9, %r8
...

fetch rA rB R[rA] R[rB] rB sum rB sum rB
cycle PC rA rB R[rB R[rB] rB sum rB sum rB
0 0x0
1 0x2 8 9
2 0x3 --- --- 800 900 9
3 9 8 --- --- --- 1700 9
4 900 800 8 --- --- 1700 9
5 1700 9 --- ---
6 1700 9

fetch/decode decode/execute execute/memory memory/writeback

should be 1700
29



exploiting the opportunity

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackMUX

30



exercise: forwarding paths
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
subq %r8, %r10 F D E M W
xorq %r8, %r9 F D E M W
andq %r9, %r8 F D E M W

in subq, %r8 is addq.
in xorq, %r9 is addq.
in andq, %r9 is addq.
in andq, %r9 is xorq.

A: not forwarded from
B-D: forwarded to decode from {execute,memory,writeback} stage of 31



unsolved problem
cycle # 0 1 2 3 4 5 6 7 8

movq 0(%rax), %rbx F D E M W
subq %rbx, %rcx F D E M W
subq %rbx, %rcx F D D E M W

stall

combine stalling and forwarding to resolve hazard

assumption in diagram: hazard detected in subq’s decode stage
(since easier than detecting it in fetch stage)

32



unsolved problem
cycle # 0 1 2 3 4 5 6 7 8

movq 0(%rax), %rbx F D E M W
subq %rbx, %rcx F D E M W
subq %rbx, %rcx F D D E M W

stall
combine stalling and forwarding to resolve hazard

assumption in diagram: hazard detected in subq’s decode stage
(since easier than detecting it in fetch stage)

32



solveable problem
cycle # 0 1 2 3 4 5 6 7 8

movq 0(%rax), %rbx F D E M W
movq %rbx, 0(%rcx) F D E M W

33



why can’t we…

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackclock cycle needs to be long enough
to go through data cache AND

to go through math circuits!
(which we were trying to avoid by putting them in separate stages)

INVALID

34



why can’t we…

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackclock cycle needs to be long enough
to go through data cache AND

to go through math circuits!
(which we were trying to avoid by putting them in separate stages)

INVALID

34



control hazard
0x00: cmpq %r8, %r9
0x08: je 0xFFFF
0x10: addq %r10, %r11

fetch rA rB R[rA] R[rB] result … … …
cycle PC rA rB R[rA] R[rB] result … … …
0 0x0
1 0x8 8 9
2 ??? --- --- 800 900
3 ??? --- --- --- --- less than

fetch→decode decode→execute execute→writebackexecute→writeback

0xFFFF if R[8] = R[9]; 0x10 otherwise

35



control hazard
0x00: cmpq %r8, %r9
0x08: je 0xFFFF
0x10: addq %r10, %r11

fetch rA rB R[rA] R[rB] result … … …
cycle PC rA rB R[rA] R[rB] result … … …
0 0x0
1 0x8 8 9
2 ??? --- --- 800 900
3 ??? --- --- --- --- less than

fetch→decode decode→execute execute→writebackexecute→writeback

0xFFFF if R[8] = R[9]; 0x10 otherwise

35



jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags
compute if jump goes to LABEL

use computed result

36



jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags

compute if jump goes to LABEL

use computed result

36



jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags

compute if jump goes to LABEL

use computed result

36



jXX: stalling?

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
(do nothing) F D E M W
(do nothing) F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL // not taken
xorq %r10, %r11
movq %r11, 0(%r12)
...

compare sets flags
compute if jump goes to LABEL

use computed result

36



making guesses
cmpq %r8, %r9
jne LABEL
xorq %r10, %r11
movq %r11, 0(%r12)
...

LABEL: addq %r8, %r9
imul %r13, %r14
...

speculate (guess): jne won’t go to LABEL
right: 2 cycles faster!; wrong: undo guess before too late

37



jXX: speculating right (1)

cycle # 0 1 2 3 4 5 6 7 8
cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
xorq %r10, %r11 F D E M W
movq %r11, 0(%r12) F D E M W
…

cmpq %r8, %r9
jne LABEL
xorq %r10, %r11
movq %r11, 0(%r12)
...

LABEL: addq %r8, %r9
imul %r13, %r14
...

38



jXX: speculating wrong
cycle # 0 1 2 3 4 5 6 7 8

cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
xorq %r10, %r11 F D
(inserted nop) E M W
movq %r11, 0(%r12) F
(inserted nop) D E M W
LABEL: addq %r8, %r9 F D E M W
imul %r13, %r14 F D E M W
…

instruction “squashed”

instruction “squashed”

39



jXX: speculating wrong
cycle # 0 1 2 3 4 5 6 7 8

cmpq %r8, %r9 F D E M W
jne LABEL F D E M W
xorq %r10, %r11 F D
(inserted nop) E M W
movq %r11, 0(%r12) F
(inserted nop) D E M W
LABEL: addq %r8, %r9 F D E M W
imul %r13, %r14 F D E M W
…

instruction “squashed”

instruction “squashed”

39



“squashed” instructions
on misprediction need to undo partially executed instructions

mostly: remove from pipeline registers

more complicated pipelines: replace written values in
cache/registers/etc.

40



backup slides

41



exercise: forwarding paths (2)
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9
subq %r8, %r9
ret (goes to andq)
andq %r10, %r9

in subq, %r8 is addq.
in subq, %r9 is addq.
in andq, %r9 is subq.
in andq, %r9 is addq.

A: not forwarded from
B-D: forwarded to decode from {execute,memory,writeback} stage of 42


	exercise: throughput/latency
	slowest stage matters

	challenge: hazards
	data hazards
	example execution: wrong result, stalling resolution
	better fix: forwarding
	exercise: what forwarding
	can't always forward: load-use
	can forward: load-to-store

	control hazards
	idea: branch prediction


	backup slides
	alt exercise


