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secure communication context
“secure” communication

mostly talk about on network

between principals ≈ people/servers/programs 

but same ideas apply to, e.g., messages on disk 
communicating with yourself

2 



A to B
running example: A talking with B 

maybe sometimes also with C

attacker E — eavesdropper 
passive
gets to read all messages over network

attacker M — machine-in-the-middle 
active
gets to read and replace and add messages on the network
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privileged network position
intercept radio signal?

control local wifi router? 
may doesn’t just forward messages

compromise network equipment?

send packets with ‘wrong’ source address 
called “spoofing”

fool DNS servers to ‘steal ’name?

fool routers to send you other’s data?
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possible security properties? (1)
what we’ll talk about:

confidentiality — information shared only with those who should 
have it

authenticity — message genuinely comes from right principal (and 
not manipulated)
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possible security properties? (2)
important ones we won’t talk about…:

repudiation — if A sends message to B, B can’t prove to C it came 
from A 

(takes extra effort to get along with authenticity)

forward-secrecy — if A compromised now, E can’t use that to 
decode past conversations with B

anonymity — A can talk to B without B knowing who it is

…
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secrets
if A is talking to B are communicating,
what stops M (machine-in-the-middle) from pretending to be B? 

assumption: B knows some secret information that M does not 

start: assume A and B have a shared secret they both know 
(and attackers do not)

(later: easier to setup assumptions)
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bad ways to use shared secret
A → B: What’s the password?

B → A: It’s ‘Abc$xyM$e’.

A → B: That’s right! Here’s my confidential information. 

well, this doesn’t really help: 
against E (eavesdropper), who can read the password AND confidential 
info
against M (machine-in-the-middle), who can also pretend to be A for B
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symmetric encryption
some magic math! 

we’ll be given two functions by expert: 
encrypt: E(key, message) = ciphertext
decrypt: D(key, ciphertext) = message

key = shared secret 
ideally small (easy to share) and chosen at random
unsolved problem: how to share it?
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symmetric encryption properties (1)
our functions: 

encrypt: E(key, message) = ciphertext
decrypt: D(key, ciphertext) = message

knowing E and D, it should be hard to
learn anything about the message from the ciphertext without key

“hard” ≈ would have to try every possible key
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secrecy properties
actually that’s not secret enough, usually want to resist
recovery of info about message or key even given…

partial info about the message, or
lots of other (message, ciphertext) pairs, or 

“known plaintext”

lots of (message, ciphertext) pairs for other messages the attacker 
chooses, or 

“chosen plaintext”

lots of (message, ciphertext) pairs encrypted under similar keys, or 
“related key”
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using?
in advance: A and B share encryption key 

A computes E(key, ‘The secret formula is…’) = ***

send on network:
A → B: ***

B computes D(key, ***) = ‘The secret formula is …’
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encryption is not enough
if B receives an encrypted message from A, and…

it makes sense when decrypted, why isn’t that good enough? 

problem: an active attacker M
can selectively manipulate the encrypted message
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simple encryption idea (1)
suppose encrypting message

one possible idea: generate unique number N (e.g. counter)

combine N and key to produce message size-bit bitstring Y

say Y=f(X, key) where f  is some ‘secure’ function: 
f  is something like a hash function, but supports arbitrary size output
f  is effectively irreversible
f  is effectivel yequally/unpredictably distributed

use Y XOR message as encrypted value
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simple encryption idea (2)
E(K, message) = (N, f(N, key) XOR message) = (N, C)

If we know (N, C) and don’t know key, can we figure out anything 
about message? 

violates f(N, key) being equally/unpredictably distributed

If we know (N, C) and message, can we find out about key 
violates f(N, key) being irreversible

If we know (N, C) and message, can we decrypt (N’, C’)? 
remember: each encrypted message chooses unique N
not if f(N, key) and f(N’, key) don’t have predictable relationship
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manipulating simple encryption
E(K, message) = (N, f(N, key) xor message) = (N, C)

If we know (N, C) and message, we can generate an encryption of 
(all zeroes):

(N, C xor message) = (N, f(N, key) xor (message xor message)) = 
(N, f(N, key) xor 0)

And can generate encryption of some other message Q:

(N, C xor message xor Q) = (N, f(N, key) xor Q)
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manipulating messages, more generally
as an active attacker 

if we know part of plaintext
can sometimes make it read anything else by flipping bits 

“Pay $100 to Bob” → “Pay $999 to Bob”

we can sometimes shorten 
“Pay $100 to ABC Corp if they …” → “Pay $100 to ABC Corp”

we can sometimes corrupt selected parts of message and check 
what the response is 

e.g. what changes don’t make B reject message as malformed?
with repeated tries, often reveals part of message’s values
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maybe don’t xor?
these XOR-based constructions are very common 

example: probably used within most connections to websites

there are other ideas, but…

but can still generate meaningful manipulated messages 
usually just need to work on larger units than bits

actual solution: additional message authentication code 
sometimes provided pre-combined with encryption and called 
authenticated encryption
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calling things encryption
in this class, (symmetric) encryption means condidentiality but not 
authenticity 

has malleability problme

matches most common thing a library calls encryption 

but, sometimes encryption will be…
“authenticated encryption” = encryption + message authentication 
code, or
some lower level tool (similar to f  function earlier) that needs extra 
steps to provide confidentiality
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message authentication codes (MACs)
goal: use shared secret key to verify message origin 

one function: MAC(key, message) = tag

knowing MAC and the message and the tag, it should be hard to: 
find the value of MAC(key, other message) — (“forge” the tag)
find the key
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contrast: MAC v checksum
message authentication code acts like checksum, but…

checksum can be recomputed without any key

checksum meant to protect against accidents, not malicious 
attacks 

checksum can be faster to compute + shorter
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using without encryption?
in advance: choose + share MAC key 

A prepares message: 
A computes ‘Please pay $100 to M.’
A computes MAC(MAC key, ‘Please pay $100 to M.’) = @@@

A → B: Please pay $100 to M. @@@

B processes message: 
B recomputes MAC(MAC key, ‘Please pay $100 to M.’)
rejects if it doesn’t match @@@
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using with encryption?
in advance: choose + share encryption key and MAC key 

A prepares message: 
A computes E(encrypt key, ‘The secret formula is…’) = ***
A computes MAC(MAC key, ***) = @@@

A → B: *** @@@

B processes message: 
B recomputes MAC(MAC key, ***)
rejects if it doesn’t match @@@
B computes D(key, ***) = ‘The secret formula is …’
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using with encryption?
in advance: choose + share encryption key and MAC key 

A prepares message: 
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“authenticated encryption”
often encryption + MAC packaged together

name: authenticated encryption
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exercise
suppose A, B have shared keys K1, K2

assume attackers do not have keys

E/D = encrypt/decrypt function
A asks B to pay Sue $100 by sending message with these parts: 

“2023-11-03: pay $100”
E(K1, “2023-11-03 Sue”)
MAC(K2, “2023-11-03 $100”)

1. can eavesdropper learn: (a) who is being paid, (b) how much?

2. can machine-in-middle change: (a) who is being paid, (b) how 
much?
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shared secrets impractical
problem: shared secrets usually aren’t practical 

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people
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bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance
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asymmetric encryption
we’ll have two functions: 

encrypt: PE(public key, message) = ciphertext
decrypt: PD(private key, ciphertext) = message

(public key, private key) = “key pair”
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key pairs
‘private key’ = kept secret 

usually not shared with anyone

‘public key’ = safe to give to everyone 
usually some hard-to-reverse function of public key

concept will appear in some other cryptographic primitives
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asymmetric encryption properties
functions: 

encrypt: PE(public key, message) = ciphertext
decrypt: PD(private key, ciphertext) = message

should have: 
knowing PE, PD, the public key, and ciphertext shouldn’t make it too 
easy to find message
knowing PE, PD, the public key, ciphertext, and message shouldn’t 
help in finding private key
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secrecy properties with asymmetric
not going to be able to make things as hard as “try every possibly 
private key”

but going to make it impractical 

like with symmetric encryption want to prevent recovery of any info 
about message

also have some other attacks to worry about: 
e.g. no info about key should be revealed based on our reactions to 
decrypting maliciously chosen ciphertexts
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using asymmetric v symmetric
both: 

use secret data to generate key(s)

asymmetric (AKA public-key) encryption 
one “keypair” per recipient
private key kept by recipient
public key sent to all potential senders
encryption is one-way without private key

symmetric encryption 
one key per (recipient + sender)
secret key kept by recipient + sender
if you can encrypt, you can decrypt
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using?
in advance: B generates private key + public key

in advance: B sends public key to A (and maybe others) securely 

A computes PE(public key, ‘The secret formula is…’) = *******

send on network:
A → B: ********

B computes PD(private key, *******) = ‘The secret formula is …’
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digital signatures
symmetric encryption : asymetric encryption ::
message authentication codes : digital signatures

34 



digital signatures
pair of functions: 

sign: S(private key, message) = signature
verify: V (public key, signature, message) = 1 (“yes, correct signature”)

(public key, private key) = key pair (similar to asymmetric 
encryption) 

public key can be shared with everyone
knowing S, V , public key, message, signature
doesn’t make it too easy to find another message + signature so that
V (public key, other message, other signature) = 1
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using?
in advance: A generates private key + public key

in advance: A sends public key to B (and maybe others) securely 

A computes S(private key, ‘Please pay ...’) = *******

send on network:
A → B: ‘Please pay ...’, ********

B computes V (public key, ‘Please pay ...’, *******) = 1
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tools, but...
have building blocks, but less than straightforward to use 

lots of issues from using building blocks poorly

start of art solution: formal proof sytems 
mathematical proof that attacker doing X implies encryption/MAC/etc. 
broken
ideally a somewhat machine-checkable proof

(we aren’t going to be that formal…)
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replay attacks
A→B: Did you order lunch? [signature 1 by A] 

signature 1 by A = Sign(A’s private signing key, “Did you order lunch?”)
will check with Verify(A’s public key, signature 1 by A, “Did you order 
lunch?”)

B→A: Yes. [signature 1 by B] 
signature 1 by B = Sign(B’s private key, “Yes.”)
will check with Verify(B’s public key, signature 1 by B, “Yes.”)

A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC. 
Should I let him in? [signature N  by A] 

so attacker can’t manipulate/forge messages, everything’s okay?
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replay attacks
A→B: Did you order lunch? [signature 1 by A]
B→A: Yes. [signature 1 by B]
A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC. 
Should I let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry? 

as an attacker, I can copy/paste B’s earlier message! 
just keep the same signature, so it can be verified!
Verify(B’s public key, “Yes.”, signature 2 from B) = 1
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nonces (1)
one solution to replay attacks:
A→B: #1 Did you order lunch? [signature 1 from A] 

signature from A = Sign(A’s private key, “#1 Did you order lunch?”)

B→A: #1 Yes. [signature 1 from B]
A→B: #2 Vegetarian? [signature 2 from A]
B→A: #2 No, not this time. [signature 2 from B]
…
A→B: #54 There’s a guy at the door, says he’s here to repair the 
AC. Should I let him in? [signature ? from A]

(assuming A actually checks the numbers)
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nonces (2)
another solution to replay attacks:
B→A: [next number #91523] [signature from B]
A→B: #91523 Did you order lunch? [next number #90382] 
[signature from A]
B→A: #90382 Yes. [next number #14578] [signature from B]
…
A→B: #6824 There’s a guy at the door, says he’s here to repair 
the AC. Should I let him in? [next number #36129][signature from 
A] 

(assuming A actually checks the numbers)
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replay attacks (alt)
M→B: #50 Did you order lunch? [signature by M]
B→M: #50 Yes. [signature intended for M by B]
A→B: #50 There’s a guy at the door, says he’s here to repair the 
AC. Should I let him in? [signature ? by A]

how can M hijack the reponse to A’s inquiry? 

as an attacker, I can copy/paste B’s earlier message! 
just keep the same signature, so it can be verified!
Verify(B’s public key, “#50 Yes.”, signature intended for M by B) = 1
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confusion about who’s sending?
in addition to nonces, either 

write down more who is sending + other context so message can’t be 
reused and/or
use unique set of keys for each principal you’re talking to

with symmetric encryption, also “reflection attacks” 
A sends message to B, attacker sends A’s message back to A as if it’s 
from B
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other attacks without breaking math
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TLS state machine attack
from https://mitls.org/pages/attacks/SMACK

protocol: 
step 1: verify server identity
step 2: receive messages from server

attack: 
if server sends “here’s your next message”,
instead of “here’s my identity”
then broken client ignores verifying server’s identity
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Matrix vulnerabilties
one example from https://nebuchadnezzar-megolm.
github.io/static/paper.pdf

system for confidential multi-user chat 

protocol + goals: 
each device (my phone, my desktop) has public key
to talk to me, you verify one of my public keys
to add devices, my client can forward my other devices’ public keys

bug: 
when receiving new keys, clients did not check who they were forwarded 
from correctly
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on the lab
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getting public keys?
browser talking to websites
needs public keys of every single website? 

not really feasible, but…
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certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already: 

A can generate “certificate” for B: 
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key 
if C does not trust A, well, can’t trust this either
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certificate authorities
websites (and others) go to certificates authorities (CA) with their 
public key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

signed message called certificate

send certificates to browsers to verify identity 
website can forward certificate instead of browser contacting CA directly
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example web certificate (1)
 Version: 3 (0x2)
 Serial Number: 7b:df:f6:ae:2e:d7:db:74:d3:c5:77:ac:bc:44:bf:1b
 Signature Algorithm: sha256WithRSAEncryption
 Issuer:

 countryName  = US
 stateOrProvinceName  = MI
 localityName  = Ann Arbor
 organizationName  = Internet2
 organizationalUnitName  = InCommon
 commonName  = InCommon RSA Server CA

 Validity
 Not Before: Apr 25 00:00:00 2023 GMT
 Not After : Apr 24 23:59:59 2024 GMT

 Subject:
 countryName  = US
 stateOrProvinceName  = Virginia
 organizationName  = University of Virginia
 commonName  = canvas.its.virginia.edu

....
 X509v3 extensions:

....
 X509v3 Subject Alternative Name: DNS:canvas.its.virginia.edu
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example web certificate (2)
....

 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption

 RSA Public-Key: (2048 bit)
 Modulus:

 00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:f4:e4:d4:6c:
 94:be:91:a8:6a:21:43:b2:d5:9a:48:b0:64:d9:f7:
 f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:f6:46:4b:42:

....
Signature Algorithm: sha256WithRSAEncryption
Signature Value:

 24:3a:67:c8:0d:ef:eb:8c:eb:ba:8f:d5:11:d2:1e:ea:44:eb:
 fe:af:93:7d:d9:4a:2b:44:a3:7f:47:50:aa:d1:b3:9c:a8:a8:

....
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certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority 

so their public key, comes with my OS/browser? 
not exactly…

they have their own certificate signed by “USERTrust RSA 
Certification Authority”
and their public key comes with your OS/browser? 

(but both CAs now operated by UK-based Sectigo)
53 



certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu … …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com …

some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)
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how many trust anchors?
Mozilla Firefox (as of 27 Feb 2023) 

155 trust anchors
operated by 55 distinct entities

Microsoft Windows (as of 27 Feb 2023) 
237 trust anchors
operated by 86 distinct entities
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public-key infrastructure
ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure” 

several of these: 
for verifying identity of websites
for verifying origin of domain name records (kind-of)
for verifying origin of applications in some OSes/app stores/etc.
for encrypted email in some organizations
…
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exercise
exercise: how should website certificates verify identity?
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how do certificate authorities verify
for web sites, set by CA/Browser Forum

organization of: 
everyone who ships code with list of valid certificate authorities 

Apple, Google, Microsoft, Mozilla, Opera, Cisco, Qihoo 360, Brave, …
certificate authorities

decide on rules (“baseline requirements”) for what CAs do
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BR domain name identity validation
options involve CA choosing random value and: 

sending it to domain contact (with domain registrar) and receive 
response with it, or

observing it placed in DNS or website or sent from server in other 
specific way 

exercise: problems this doesn’t deal with?
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some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system 
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate 
infrastructure for signing domain name records) when looking this up)
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additional crypto tools
cryptographic hash functions (summarize data)

‘secure’ random numbers

key agreement
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motivation: summary for signature
digital signatures typically have size limit

…but we want to sign very large messages 

solution: get secure “summary” of message
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cryptographic hash
hash(M) = X 

given X: 
hard to find message other than by guessing

given X, M: 
hard to find second message so that hash(second message) = X

example uses: 
substitute for original message in digital signature
building message authentication codes
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password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password 
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions 
Argon2i
scrypt
PBKDF2
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random numbers
need a lot of keys that no one else knows 

common task: choose a random number

question: what does random mean here?
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cryptographically secure random numbers
security properties we might want for random numbers: 

attacker cannot guess (part of) number better than chance

knowing prior ‘random’ numbers shouldn’t help predict next 
‘random’ numbers

compromising machine now shouldn’t reveal older random numbers
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exercise: how to generate?
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/dev/urandom
Linux kernel random number generator 

collects “entropy” from hard-to-predict events 
e.g. exact timing of I/O interrupts
e.g. some processor’s built-in random number circuit

turned into as many random bytes as you want
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turning ‘entropy’ into random bytes
lots of ways to do this; one (rough/incomplete) idea:

internal variable state

to add ‘entropy’ 
state ← SecureHash(state + entropy)

to extract value: 
random bytes ← SecureHash(1 + state)
give bytes that can’t be reversed to compute state 

state ← SecureHash(2 + state)
change state so attacker can’t take us back to old state if compromised
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just asymmetric?
given public-key encryption + digital signatures…

why bother with the symmetric stuff? 

symmetric stuff much faster

symmetric stuff much better at supporting larger messages
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key agreement
problem: A has B’s public encryption key
wants to choose shared secret 

some ideas: 
A chooses a key, sends it encrypted to B
A sends a public key encrypted to B, B chooses a key and sends back

alternate model (not needed, but usually used by TLS, SSH, …): 
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys
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Diffie-Hellman key agreement
A and B want to agree on shared secret 

A chooses random value Y

A sends public value derived from Y (“key share”)

B chooses random value Z

B sends public value derived from Z (“key share”)

A combines Y with public value from B to get number
B combines Z with public value from A to get number 

and b/c of math chosen, both get same number
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Diffie-Hellman key agreement (details, if 
needed)
math requirement: 

some f , so f(f(X, Y ), Z) = f(f(X, Z), Y )
(that’s hard to invert, etc.)

choose X in advance and:
 A randomly chooses Y  B randomly chooses Z
 A sends f(X, Y ) to B  B sends f(X, Z) to A
 A computes f(f(X, Z), Y )  B computes f(f(X, Y ), Z)
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example f(a, b) = ab (mod p)
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key agreement and asym. encryption
can construct public-key encryption from key agreeement 

private key: generated random value Y
public key: key share generated from that Y

PE(public key, message) = 
generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) = 
extract (key share generated from Z)
combine with private key to get shared secret, …
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typical TLS handshake

client  server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
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TLS: after handshake
use key shares results to get several keys 

take hash(something + shared secret) to derive each key

separate keys for each direction (server → client and vice-versa)

often separate keys for encryption and MAC 

later messages use encryption + MAC + nonces
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things modern TLS usually does
(not all these properties provided by all TLS versions and modes) 

confidentiality/authenticity 
server = one ID’d by certificate
client = same throughout whole connection

forward secrecy 
can’t decrypt old conversations (data for KeyShares is temporary)

fast 
most communication done with more efficient symmetric ciphers
1 set of messages back and forth to setup connection
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denial of service (1)
so far: worried about network attacker disrupting 
confidentiality/authenticity 

what if we’re just worried about just breaking things

well, if they control network, nothing we can do…

but often worried about less
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denial of service (2)
if you just want to inconvenience…

attacker just sends lots of stuff to my server

my server becomes overloaded?

my network becomes overloaded? 

but: doesn’t this require a lot of work for attacker?

exercise: why is this often not a big obstacle
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denial of service: asymmetry
work for attacker > work for defender

how much computation per message? 
complex search query?
something that needs tons of memory?
something that needs to read tons from disk?

how much sent back per message? 

resources for attacker > resources of defender

how many machines can attacker use?
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denial of service: reflection/amplification
instead of sending messages directly…attacker can send messages 
“from” you to third-party

third-party sends back replies that overwhelm network

example: short DNS query with lots of things in response 

“amplification” = 
third-party inadvertantly turns small attack into big one
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firewalls
don’t want to expose network service to everyone?

solutions: 
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”
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firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…
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network security summary (1)
communicating securely with math 

secret value (shared key, public key) that attacker can’t have
symmetric: shared keys used for (de)encryption + auth/verify; fast
asymmetric: public key used by any for encrypt + verify; slower
asymmetric: private key used by holder for decrypt + sign; slower

protocol attacks — repurposing encrypt/signed/etc. messages

certificates — verifiable forwarded public keys

key agreement — for generated shared-secret “in public” 
publish key shares from private data
combine private data with key share for shared secret
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network security summary (2)
TLS: combine all cryptography stuff to make “secure channel” 

(things we probably didn’t get to:)

denial-of-service — attacker just disrupts/overloads (not subtle)

firewalls
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backup slides
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backup slides
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cryptographic hash uses
find shorter ‘summary’ to substitute for data 

what hashtables use them for, but…
we care that adversaries can’t cause collisions!

deal with message limits in signatures/etc.

password hashing — but be careful! [next slide]

constructing message authentication codes 
hash message + secret info (+ some other details)
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