

things programs on portal shouldn’t do
read other user's files

modify OS's memory

read other user’s data in memory

hang the entire system

things programs on portal shouldn’t do
read other user’s files

modify OS's memory

read other user’s data in memory

hang the entire system

privileged operation: problem

how can hardware (HW) plus operating system (OS) allow:
read your own files from hard drive

but disallow:
read others files from hard drive

some ideas

OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

some ideas

OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program's code can't do bad hard drive access

no work for HW, but complex for OS
may require compiling differently to allow analysis

some ideas

OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can't do bad hard drive access

no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

kernel mode

extra one-bit register: “are we in kernel mode”
other names: privileged mode, supervisor mode, ...

not in kernel mode = user mode
certain operations only allowed in kernel mode
privileged instructions

example: talking to any |/O device

what runs in kernel mode?
system boots in kernel mode

OS switches to user mode to run program code

next topic: when does system switch back to kernel mode?
how does OS tell HW where the (trusted) OS code is?

hardware + system call interface

applications + libraries

system call interface
user-mode
hardware kernel part of OS that runs in kernel mode
interface kernel-mode
(limited) hardware interface

(complete)

hardware

calling the OS?

void readFromDiskInto(int diskLocation, char *dest) {

runPrivilegedInstruction(...);

OS code{)
|unnEEEEEE o
void readFileSafely(const char *name, char *dest) {
if (canCurrentProgramCanAccessFile(name)) {
readFromDiskInto(lookupFile(name), dest)
}
}
program code how do we let this code run
~—

——— readFileSafely in kernel mode
but not readFromD1isk?

controlled entry to kernel mode (1)

special instruction: “make system call”

similar idea as call instruction — jump to function elsewhere
(and allow that function to return later)

runs OS code in kernel mode at location specified earlier
OS sets up at boot

location can’t be changed without privilieged instrution

10

controlled entry to kernel mode (2)

OS needs to make specified location:

figure out what operation the program wants
calling convention, similar to function arguments + return value

be “safe” — not allow the program to do ‘bad’ things
example: checks whether current program is allowed to read file before
reading it

requires exceptional care — program can try weird things

11

system call process

user mode kernel mode

program encodes
request for OS in regs

CLERE RN

start system call handler

program runs special instruction
“system call”

read registers
to find out what
program wants
and maybe do it

e

12

system call process

user mode kernel mode

% program encodes
request for OS in regs
Iy] & start system call handler

program runs special instruction
“system call”

read registers
to find out what
program wants

and maybe do it

e

12

system call terminology

some inconsistency:

system call = event of entering kernel mode on request?

system call = whole process from beginning to end?

same issue as with ‘function call’
is it just starting the function, or the whole time the function runs?

13

Linux x86-64 system calls
special instruction: syscall

runs OS specified code in kernel mode

14

Linux syscall calling convention
before syscall:
%rax — system call number

%rdi, %rsi, %rdx, %rl0, %r8, %r9 — args

after syscall:
%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls

15

Linux x86-64 hello world

.globl _start

.data
hello_str: .asciz "Hello,_ World!\n"
.text
_start:
movq S$1, %rax # 1 = "write"

movq S$1, %rdi # file descriptor 1 = stdout
movq S$hello_str, %rsi

movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

16

approx. system call handler

sys_call_table:
.quad handle_read_syscall
.quad handle_write_syscall

// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi

call *sys_call_table(,%rax,8)
popq %rdi

popq %rcx
return_from_exception

Linux system call examples

mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process
open, read, write — access files

_exit — terminate a process

socket, accept, getpeername — socket-related

18

Linux system call examples

mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process
open, read, write — access files

_ex1t — terminate a process

socket, accept, getpeername — socket-related

18

system call handled slowly?

user mode kernel mode
program encodes

request for OS in regs
example: “read keypress”
start system call handler
maybe need to wait %

for keypress to read

program runs special instruction
“system call”

so do something else for a while

later, get back to program g

- mlmommom

e

19

system call handled slowly?

user mode kernel mode
program encodes

request for OS in regs
example: “read keypress”
start system call handler
maybe need to wait %

for keypress to read

program runs special instruction
“system call”

so do something else for a while

later, get back to program g

- mlmommom

T

19

system call handled slowly?

user mode kernel mode
program encodes

request for OS in regs
example: “exit program”
................................... start system call handler

program runs special instruction
“system call”

At

nothing left to do in this program

so do something else

19

system call handled slowly?

user mode kernel mode
program encodes

request for OS in regs E
example: “exit program” !
.................................... : start SyStem Ca” handler
orogram runs special nstraction .:
“system call” . ?
nothing left to do in this program

so do something else

19

system call wrappers

library functions to not write assembly:

open:
movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret
has_error:
neg %rax
movq %rax, errno
movq $-1, %rax
ret

20

system call wrappers

library functions to not write assembly:

open:
movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret
has_error:
neg %rax
movq %rax, errno
movq $-1, %rax
ret

20

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {
printf("error:_ %s\n", strerror(errno));
exit(1l);
}

result = read(file_descriptor, ...);

21

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {
printf("error:_ %s\n", strerror(errno));
exit(1l);
}

result = read(file_descriptor, ...);

21

strace hello_world (1)
strace — Linux tool to trace system calls

run on assembly program we saw earlier:

$ strace -o trace.txt ./hello_world

$ cat trace.txt

execve("./hello_world", ["./hello_world"]
Ox7ffeedafdda® /x 28 vars x/) = 0

write(l, "Hello, World!\n\0", 14) =

exit(0) =

+++ exited with 0 +++

)

22

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }

when statically linked:
execve("./hello_world", ["./hello_world"], Ox7ffeb4127f70 /* 28 vars x/)

=0
brk (NULL) = 0x22f8000
brk (0x22f91c0) = 0x22f91cO
arch_prctl(ARCH_SET_FS, 0x22f8880) =0
uname ({sysname="Linux", nodename="reiss-t3620", ...}) = 0
readlink("/proc/self/exe", "/u/cr4bd/spring2023/cs3130/slide"..., 4096)
= 57
brk(0x231alc0) = 0x231lalcO
brk(0x231b000) = 0x231b000O

-1 ENOENT (No such file or
directory)

fstat(l, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0

write(l, "Hello, World!\n", 14) 14

exit_group(0) ?

access("/etc/1ld.so.nohwcap", F_OK)

23

aside: what are those syscalls?
execve: run program

brk: allocate heap space
arch_prctl(ARCH_SET_FS, ...): thread local storage pointer

may make more sense when we cover concurrency/parallelism later
uname: get system information
readlink of /proc/self/exe: get name of this program
access: can we access this file [in this case, a config file]?
fstat: get information about open file

exit__group: variant of exit

24

strace hello_world (2)

#include <stdio.h>
int main() { puts("Hello,_World!"); }

when dynamically linked:
execve("./hello_world", ["./hello_world"], 0x7ffcfe91d540 /x 28 vars x/)

=0
brk (NULL) =0

x55d6c351b000

openat (AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=196684, ...}) = 0
mmap (NULL, 196684, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7a62dd3000

close(3) =0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directonr
openat (AT_FDCWD, "/1lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read (3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0"..., 832) = 832
close(3) 0

14
?

write(l, "Hello, World!\n", 14)
exit_group(0)
+++ exited with 0 +++ 25

hardware + system call interface

applications + libraries

system call interface

user-mode
hardware kernel part of OS that runs in kernel mode
interface kernel-mode
(limited) hardware interface
(complete)
hardware

26

hardware + system call + library interface

application

user-mode
hardware

interface
(limited)

library interface

system libraries

system call interface

kernel part of OS that runs in kernel mode

kernel-mode
hardware interface
(complete)

hardware

27

things programs on portal shouldn’t do
read other user's files
modify OS’s memory
read other user’s data in memory

hang the entire system

28

memory protection

modifying another program’'s memory?

Program 1 Program 2

long global = 42;
main() {

printf("%p", &global); // while program 1 is in ...:

long *ptr;
PSR * = *
printf("sld\n", global); | Po' - 199

}
What happens?
A. 42 is printed B. 100 is printed

C. program 1 crashes D. program 2 crashes
E. something else

29

program memory (two programs)

Program A Program B
Used by OS Used by OS
Stack Stack

Heap / other dynamic

Heap / other dynamic

Writable data

Writable data

Code + Constants

Code + Constants

30

address space

programs have ///lusion of own memory

called a program’s address space

Program A
addresses

Program B

addresses

real memory

mapping
(set by OS)

Program A code

Program B code

mapping
(set by OS)

Program A data

Program B data

OS data

31

program memory (two programs)

Program A Program B
Used by OS Used by OS
Stack Stack

Heap / other dynamic

Heap / other dynamic

Writable data

Writable data

Code + Constants

Code -+ Constants

32

address space

programs have ///lusion of own memory

called a program’s address space

Program A
addresses

Program B

addresses

real memory

mapping
(set by OS)

Program A code

Program B code

mapping
(set by OS)

Program A data

Program B data

OS data

trigger error

33

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

34

program crashing?

what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

35

program crashing?

what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

how does hardware do this?
would be complicated to tell about other programs, etc.

instead: hardware runs designated OS routine

35

exceptions

recall: system calls — software asks OS for help

also cases where hardware asks OS for help

different triggers than system calls

but same mechanism as system calls:

switch to kernel mode (if not already)
call OS-designated function

36

exceptions

recall: system calls — software asks OS for help

also cases where hardware asks OS for help

different triggers than system calls

but same mechanism as system calls:

switch to kernel mode (if not already)
call OS-designated function

36

types of exceptions

system calls
intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction

(and more we'll talk about later)

37

types of exceptions

system calls
intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction

(and more we'll talk about later)

37

types of exceptions

system calls
intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction

(and more we'll talk about later)

37

types of exceptions

system calls
intentional — ask OS to do something

errors/events in programs »Sy_nchronous
memory not in address space (“Segmentation fault”) | triggered by
privileged instruction current program

divide by zero, invalid instruction

(and more we'll talk about later)

37

things programs on portal shouldn’t do
read other user's files

modify OS's memory

read other user’s data in memory

hang the entire system

38

types of exceptions

system calls
intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction

external — /0, etc.
timer — configured by OS to run OS at certain time
|/O devices — key presses, hard drives, networks, ...
hardware is broken (e.g. memory parity error)

rsynchronous
triggered by
current program

rasynchronous
not triggered by

running program

39

exceptions [Venn diagram]

system
calls
request

interrupts
external

faults
unusual behavior

from program to program

of program
(example: 1/0)

(example:
segfault)

exceptions

40

general exception process

user mode kernel mode

e

something triggers exception
maybe the program did
or maybe something else

start exception handler

E B R

OS handles

g0 back to running whatever happened

program code
possibly a different
program than before

e

exit exception handler

41

time multiplexing

e 5

1] = operating system

42

time multiplexing

exception happens

= operating system

return from exception

42

switching programs

OS starts running somehow
some sort of exception

saves old registers 4+ program counter + address mapping
(optimization: could omit when program crashing/exiting)

sets new registers + address mapping, jumps to new program
counter

called context switch
saved information called context

43

contexts (A running)

in Memory

-~"lcode, stack, etc.

Process A memory:

code, stack, etc.

Process B memory:

OS memory:

%rax

SF

%rbx

ZF

%rcx

PC

44

contexts (B running)

in CPU

%rax

%rbx

%rcx

%rsp

SF

PC

in Memory

Process A memory:

code, stack, etc.

’Process B memory:
code, stack, etc.

OS memory:

%rax

SF

%rbx

ZF

%rex

PC

45

threads

thread = illusion of own processor

own register values

own program counter value

46

threads

thread = illusion of own processor

own register values

own program counter value

actual implementation:

many threads sharing one processor
problem: where are register/program counter values
when thread not active on processor?

46

types of exceptions

system calls
intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction

external — 1/0, etc.
timer — configured by OS to run OS at certain time
|/O devices — key presses, hard drives, networks, ...
hardware is broken (e.g. memory parity error)

rsynchronous
triggered by
current program

rasynchronous
not triggered by

running program

47

exception patterns with 1/0 (1)

input — available now:
exception: device says “| have input now”
handler: OS stores input for later

exception (syscall): program says “l want to read input”
handler: OS returns that input

input — not available now:
exception (syscall): program says “l want to read input”
handler: OS runs other things (context switch)
exception: device says “l have input now”
handler: OS retrieves input
handler: (possibly) OS switches back to program that wanted it

48

exception patterns with 1/0 (2)

output — ready now:

exception (syscall): program says “l want to output this’
handler: OS sends output to device

output — not ready now
exception (syscall): program says “l want to output”
handler: OS realizes device can't accept output yet
(other things happen)
exception: device says “I'm ready for output now”
handler: OS sends output requested earlier

49

keyboard input timeline

read_input.\exe

read system call

read_input.exe

11l = operating system

from keyboard

50

context switches and exceptlons

E E E E E {firefox|:pxe i E E E

net key timer net net syscall key syscall key timer syscall

— operating system

program execution interleaves with OS

OS might context switch when it is run, might not

51

emptyloop lab (1)

long last_time = GetTime();

while (NotDone()) {
long current_time = GetTime();
RecordDelta(current_time - last_time);
last_time = current_time;

}

naive computer model: RecordDelta called with roughly same
number each time

52

emptyloop lab (2)

long last_time = GetTime();

while (NotDone()) {
long current_time = GetTime();
/* maybe 0S handles I/0 here? */
/* maybe 0S runs ssh for a bit here? */
J* ... */
RecordDelta(current_time - last_time);
last_time = current_time;

}

will see spikes in recorded times from exceptions

can infer what system is doing
53

emptyloop lab (3)
upcoming lab: we'll supply program that times in loop

also will look at Linux counters for asynchronous exceptions

should be able to observe when OS/other programs run

(and about how long)

54

review: definitions

exception: hardware calls OS specified routine

many possible reasons
system calls: type of exception

context switch: OS switches to another thread

by saving old register values + loading new ones
part of OS routine run by exception

55

which of these require exceptions? context
switches?

A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

56

which require exceptions [answers] (1)

A. program calls a function in the standard library

no (same as other functions in program); many standard library
functions make no system calls (and do not otherwise trigger exceptions

— for example strlen, pow; also if we consider the calling of a
function just the call instruction, then the library functions that do

make system calls won't do so until later)

B. program writes a file to disk
yes (requires kernel mode only operations)

C. program A goes to sleep, letting program B run
yes (kernel mode usually required to change the address space to acess

program B's memory)

57

which require exceptions [answer] (2)

D. program exits

yes (requires switching to another program, which requires accessing OS
data + other program's memory)

E. program returns from one function to another function
no

F. program pops a value from the stack
no

58

which require context switches [answer]

no: A. program calls a function in the standard library

no: B. program writes a file to disk

(but might be done if program needs to wait for disk and other things
could be run while it does)

yes: C. program A goes to sleep, letting program B run
yes: D. program exits
no: E. program returns from one function to another function

no: F. program pops a value from the stack

59

terms for exceptions

terms for exceptions aren't standardized

our readings use one set of terms

interrupts = externally-triggered
faults = error/event in program
trap = intentionally triggered

all these terms appear differently elsewhere

60

The Process

process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
(process could have multiple threads — with independent registers)
address space = illusion of own memory

61

backup slides

62

memory protection

modifying another program’'s memory?

Program A Program B

S;lOO@O: . long 42 // while A is working:
oo movq $99, %rax

;; do work movq %rax, 0x10000

movqg 0x10000, %rax
// RAX <- MEMORY[0Ox10000]

// MEMORY[0x10000] <- RAX

63

memory protection

modifying another program’'s memory?

Program A Program B

S;lOO@@i . long 42 // while A is working:
oo movq $99, %rax

;; do work movq %rax, 0x10000

movqg 0x10000, %rax
// RAX <- MEMORY[0Ox10000]

// MEMORY[0x10000] <- RAX

result: %rax (in A) is ..

A. 42 B. 99 C. 0x10000

D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on ... F. something else

63

memory protection

modifying another program’'s memory?

Program A Program B

S;lOO@@i . long 42 // while A is working:
oo movq $99, %rax

;; do work movq %rax, 0x10000

movqg 0x10000, %rax
// RAX <- MEMORY[0Ox10000]

// MEMORY[0x10000] <- RAX

result: %rax (in A) is 42

(with ‘normal’” multiuser OSes)
A. 42 B. 99 C. 0x10000

D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on ... F. something else

63

memory protection

modifying another program’'s memory?

Program A Program B

3;100001 . long 42 // while A is working:
oo movq $99, %rax

;; do work movq %rax, 0x10000

movqg 0x10000, %rax
// RAX <- MEMORY[0Ox10000]

// MEMORY[0x10000] <- RAX

result: %rax (in A) is 42

(with ‘normal’” multiuser OSes)
A. 42 B. 99 C. 0x10000

result: %rax (in B) is ..

D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on ... F. something else

63

memory protection

modifying another program’'s memory?

Program A Program B

S;lOO@@i . long 42 // while A is working:
oo movq $99, %rax

;; do work movq %rax, 0x10000

movqg 0x10000, %rax
// RAX <- MEMORY[0Ox10000]

// MEMORY[0x10000] <- RAX

result: %rax (in A) is 42

(with ‘normal’” multiuser OSes)
A. 42 B. 99 C. 0x10000

result: might crash

D. 42 or 99 (depending on timing/program layout/etc)

E. 42 or 99 or program might crash (depending on ...

F. something else

63

keeping permissions?

which of the following would still be secure?

A. performing authorization checks in the standard library in
addition to system call handlers

B. performing authorization checks in the standard library instead
of system call handlers

C. making the user ID a system call argument rather than storing it
persistently in the OS’'s memory

64

program memory (two programs)

Program A Program B
Used by OS Used by OS
Stack Stack

Heap / other dynamic

Heap / other dynamic

Writable data

Writable data

Code + Constants

Code + Constants

65

address space

programs have ///lusion of own memory

called a program’s address space

Program A
addresses

Program B

addresses

real memory

mapping
(set by OS)

Program A code

Program B code

mapping
(set by OS)

Program A data

Program B data

OS data

66

program memory (two programs)

Program A Program B
Used by OS Used by OS
Stack Stack

Heap / other dynamic

Heap / other dynamic

Writable data

Writable data

Code + Constants

Code -+ Constants

67

address space

programs have ///lusion of own memory

called a program’s address space

Program A
addresses

Program B

addresses

real memory

mapping
(set by OS)

Program A code

Program B code

mapping
(set by OS)

Program A data

Program B data

OS data

trigger error

68

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

69

one way to set shared memory on Linux

/* regular file, OR: */

int fd = open("/tmp/somefile.dat", O_RDWR);

/* special in-memory file */

int fd = shm_open("/name", O_RDWR);

/* make file's data accessible as memory */

void *memory = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

mmap: “map” a file's data into your memory
will discuss a bit more when we talk about virtual memory

part of how Linux loads dynamically linked libraries

70

an infinite loop

int main(void) {
while (1) {
/* waste CPU time */
+
}

If I run this on a shared department machine, can you still use it?
..if the machine only has one core?

71

timing nothing

long times[NUM_TIMINGS];
int main(void) {
for (int i = 0; i < Nj; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i1] = end - start;
}
output_timings(times);
}

same instructions — same difference each time?

72

doing nothing on a busy system

time for empty loop body

108 ¢ :
107 3
10° L ;

10° .

time (ns)

10* .
103

102 ‘ |
|| N | | ' "
10

0 200000 400000 600000 800000 1000000
sample #

doing nothing on a busy system

time for empty loop body

108 ¢ : 3

F ° o |
L .]
10° L ;

10° .

time (ns)

10* .
103

102 ‘ |
|| N | | ' " l |
10

0 200000 400000 600000 800000 1000000
sample #

time multiplexing

time

Y

75

time multiplexing

Processor:

time
loop:
jmp loop
loop:
— million cycle delay —

jmp loop
loop:

Y

75

time multiplexing

time >

loop:
jmp loop
loop:
— million cycle delay —

jmp loop
loop:

75

crash timeline timeline

segfault.exe

| = operating system

out of bounds memory acecss

76

locating exception handlers (one strategy)

exception table
base register

address
-»base + Ox000
base + Ox008
base + 0x010
base + Ox018

base + 0x108
base + 0x400

exception table (in memory)

pointer

Y

handle_divide_by_zero:
movq %rax, save_rax
movq %rbx, save_rbx

Y

movq %rax, save_rax
movq %rbx, save_rbx

handle_keyboard_interrupt:

handle_system_call:
movq %rax, save_rax
movq %rbx, save_rbx

e

keyboard input timeline

read_input.\exe

read system call

read_input.exe

11l = operating system

from keyboard

78

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %rl5, save_rl15
/* key press here */

movq %rl4, save_rl4

79

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %rl5, save_rl15
/* key press here */

movq %rl4, save_rl4

Y

handle_keyboard_interrupt:
save_old_pc save_pc
movq %rl5, save_r15
movq %rl4, save_rl4
movq %rl3, save_r13

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %rl5, save_rl15
/* key press here */

movq %rl4, save_rl4
\

oops, overwrote saved values?

e_keyboard_intec

79

interrupt disabling
CPU supports disabling (most) interrupts
interrupts will wait until it is reenabled

CPU has extra state:
are interrupts enabled?
is keyboard interrupt pending?
is timer interrupt pending?

80

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp
skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %rl15

/* interrupt happens here! */

81

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp
skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %rl15

/* interrupt happens here! */

81

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp
skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %rl15

/* interrupt happens here! */ l

81

disabling interrupts
automatically disabled when exception handler starts

also can be done with privileged instruction:

change_keyboard_parameters:
disable_interrupts

/* change things used by
handle_keyboard_interrupt here */

enable_interrupts

82

exception implementation
detect condition (program error or external event)
save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

83

exception implementation: notes
| describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

84

context

all registers values
%rax %rbx, .., %rsp, ..

condition codes
program counter

address space (map from program to real addresses)

85

context switch pseudocode

context_switch(last, next):
copy_preexception_pc last->pc
mov rax, last->rax
mov rcx, last->rcx
mov rdx, last->rdx

mov next->rdx, rdx
mov next->rcx, rcx
mov next->rax, rax
jmp next->pc

86

the classic Unix design

applications

standard library functions / shell commands
standard libraries and libc (C standard library) the shell
utility programs login login..
system call interface

CPU scheduler filesystems networking
kernel virtual memory device drivers signals
pipes swapping

hardware interface

hardware memory management unit device controllers

the classic Unix design

applications

standard library functions / shell commands

standard libraries and libc (C standard library) the shell
utility programs login login..
system call interface
user-mode)
b CPU scheduler filesystems networking
) ¢ kernel| virtual memory device drivers signals
'n_te'j sl pipes swapping
(limited)
kernel-mode hardware interface (complete)
hardware memory management unit device controllers

87

the classic Unix design

applications

standard library functions / shell commands

standard libraries and libc (C standard library) the shell
utility programs login login..
system call interface
user-mode)
b CPU scheduler filesystems networking
i ¢ kernel| virtual memory device drivers signals
|n.te|.’ sles pipes swapping
(limited)
kernel-mode hardware interface (complete)
hardware memory management unit device controllers

87

the classic Unix design

applications

standard library functions / shell commands

tthe OS?

standard libraries and libc (C standard library) the shell
utility programs login login..
system call interface
user-mode)
b CPU scheduler filesystems networking
) ¢ kernel| virtual memory device drivers signals
'n_te'j sl pipes swapping
(limited)
kernel-mode hardware interface (complete)
hardware memory management unit device controllers

87

the classic Unix design

applications

standard library functions / shell commands
standard libraries and libc (C standard library) the shell
utility programs login login...

system call interface
user-mode)
b CPU scheduler filesystems networking L the OS?
) ¢ kernel| virtual memory device drivers signals € :
'n_te'j sl pipes swapping
(limited)
kernel-mode hardware interface (complete)
hardware memory management unit device controllers

87

aside: is the OS the kernel?
OS = stuff that runs in kernel mode?
OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries 4 utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is
each piece can be replaced separately...

88

exception implementation
detect condition (program error or external event)
save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

89

exception implementation: notes
| describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

90

running the exception handler
hardware saves the old program counter (and maybe more)
identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

91

	some malicious things we'd like to stop
	privileged instruction idea
	preview: unix design
	OS code in memory
	exception entry point
	system call idea
	aside: terminology
	system calls on Linux
	maybe not return?
	system call wrappers

	interlude: strace
	kernel + standard library
	memory protection
	exercise: expected behavior?
	address spaces

	extending system calls: exception idea
	reasons for exceptions, generally

	infinite loop
	exception kinds, summarized
	exception handling generalized
	operating system runs
	context switches

	thread idea
	not just timers
	typical I/O pattern

	combined timeline
	preview: empty loop lab
	review: exception / context switch
	exercise
	aside: terms

	process
	backup slides
	exercise: expected behavior?
	exercise: why not check
	address spaces

	shared memory example code
	timing nothing

	time multiplexing
	crash timeline
	exception table
	key-in timeline
	nested exceptions?

	exception table + dispatch
	in the context
	context switch pseudocode
	Unix design [full]

	exception dispatch

