
1

Changelog

Changes made in this version not seen in first lecture:
1 November 2017: “Cache optimizations”: don’t mark writeback as
better miss rate; what it reduces is similar to miss rate (amount of times
we go to next level), but not the same thing

1

write-through v. write-back

CPU Cache

option 1: write-through

RAM
ABCD: FF …

11CD: 42
ABCD: FF

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

2

write-through v. write-back

CPU Cache

option 1: write-through

RAM
ABCD: 10 …

11CD: 42
ABCD: 10

…

write 10
to 0xABCD

1 write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

2

write-through v. write-back

CPU Cache

option 2: write-back

RAM
ABCD: 10

(dirty)
…

11CD: 42
ABCD: FF

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

2

write-through v. write-back

CPU Cache

option 2: write-back

RAM
ABCD: 10

(dirty)
…

11CD: 42
ABCD: 10

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

2

write-through v. write-back

CPU Cache RAM
ABCD: 10

(dirty)
…

11CD: 42
ABCD: 10

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

2

writeback policy

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, 4 byte blocks, 2 sets

changed value!

1 = dirty (different than memory)
needs to be written if evicted

3

allocate on write?

processor writes less than whole cache block

block not yet in cache

two options:

write-allocate
fetch rest of cache block, replace written part

write-no-allocate
send write through to memory
guess: not read soon?

4

write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001

5

write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block

5

write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block

5

write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

0xFF
mem[0x05] 1 0

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block
step 3a: read in new block – to get mem[0x05]
step 3b: update LRU information

5

write-no-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
step 1: is it in cache yet?
step 2: no, just send it to memory

6

fast writes

CPU Cache RAM

write 10
to 0xABCD

write 20
to 0x1234

0xABCD: 10
0x1234: 20

write buffer

write appears to complete immediately when placed in buffer
memory can be much slower

7

cache organization and miss rate

depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 8

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

cache organization and miss rate

depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 8

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

reasoning about cache performance

hit time: time to lookup and find value in cache
L1 cache — typically 1 cycle?

miss rate: portion of hits (value in cache)

miss penalty: extra time to get value if there’s a miss
time to access next level cache or memory

miss time: hit time + miss penalty

9

average memory access time

AMAT = hit time + miss penalty × miss rate

effective speed of memory

10

making any cache look bad

1. access enough blocks, to fill the cache

2. access an additional block, replacing something

3. access last block replaced

4. access last block replaced

5. access last block replaced

…

but — typical real programs have locality
11

cache optimizations
miss rate hit time miss penalty

increase cache size better worse —
increase associativity better worse worse?
increase block size depends worse worse
add secondary cache — — better
write-allocate better — worse?
writeback ??? — worse?
LRU replacement better ? worse?

average time = hit time + miss rate × miss penalty

12

cache optimizations by miss type
capacity conflict compulsory

increase cache size fewer misses fewer misses —
increase associativity — fewer misses —
increase block size — more misses fewer misses

(assuming other listed parameters remain constant)

13

exercise (1)

initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

14

exercise (2)

initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

15

exercise (3)

initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of conflict misses in a typical program?
(Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size

16

C and cache misses (1)

int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {

even_sum += array[i + 0];
odd_sum += array[i + 1];

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

17

C and cache misses (2)

int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 1; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? Would a set-associtiave cache be better?

18

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

19

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

19

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]

block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]

block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]

block at 2032+2KB: array[1020] through array[1023]

19

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

19

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …

address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]

20

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]

block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
20

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
20

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
20

C and cache misses (3)

typedef struct {
int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? 21

C and cache misses (3, rewritten?)

item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 1024; i += 128)

a_sum += array[i];
for (int i = 1; i < 1024; i += 128)

b_sum += array[i];

22

C and cache misses (4)

typedef struct {
int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 4-way set associative 2KB
direct-mapped cache with 16B cache blocks? 23

a note on matrix storage

A — N × N matrix

represent as array

makes dynamic sizes easier:

float A_2d_array[N][N];
float *A_flat = malloc(N * N);

A_flat[i * N + j] === A_2d_array[i][j]

24

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i * N + j] += A[i * N + k] * A[k * N + j];

25

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
26

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
26

performance

0 100 200 300 400 500
N

0.0
0.2
0.4
0.6
0.8
1.0
1.2 billions of instructions

k inner
k outer

0 100 200 300 400 500
N

0.0

0.2

0.4

0.6

0.8

1.0 billions of cycles
k inner
k outer

27

alternate view 1: cycles/instruction

0 100 200 300 400 500
N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 cycles/instruction

28

alternate view 2: cycles/operation

0 100 200 300 400 500
N

1.0

1.5

2.0

2.5

3.0

3.5 cycles/multiply or add

29

loop orders and locality

loop body: Bij+ = AikAkj

kij order: Bij, Akj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Bij has temporal locality

30

loop orders and locality

loop body: Bij+ = AikAkj

kij order: Bij, Akj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Bij has temporal locality

30

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
31

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
31

matrix squaring

Bij =
n∑

k=1
Aik × Akj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

B[i*N+j] += A[i * N + k] * A[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i * N + k] * A[k * N + j];
31

L1 misses

0 100 200 300 400 500
N

0

20

40

60

80

100

120

140 read misses/1K instructions
k inner
k outer

32

L1 miss detail (1)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

read misses/1K instruction

33

L1 miss detail (2)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

N = 93; 93 * 11 210

N = 114; 114 * 9 210

N = 27

read misses/1K instruction

34

addresses
A[k*114+j] is at 10 0000 0000 0100
A[k*114+j+1] is at 10 0000 0000 1000
A[(k+1)*114+j] is at 10 0011 1001 0100
A[(k+2)*114+j] is at 10 0101 0101 1100
…
A[(k+9)*114+j] is at 11 0000 0000 1100

recall: 6 index bits, 6 block offset bits (L1)

35

addresses
A[k*114+j] is at 10 0000 0000 0100
A[k*114+j+1] is at 10 0000 0000 1000
A[(k+1)*114+j] is at 10 0011 1001 0100
A[(k+2)*114+j] is at 10 0101 0101 1100
…
A[(k+9)*114+j] is at 11 0000 0000 1100

recall: 6 index bits, 6 block offset bits (L1)

35

conflict misses

powers of two — lower order bits unchanged

A[k*93+j] and A[(k+11)*93+j]:
1023 elements apart (4092 bytes; 63.9 cache blocks)

64 sets in L1 cache: usually maps to same set

A[k*93+(j+1)] will not be cached (next i loop)

even if in same block as A[k*93+j]

36

locality exercise (1)

/* version 1 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 2 */
for (int j = 0; j < N; ++j)

for (int i = 0; i < N; ++i)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?

37

systematic approach

for (int k = 0; k < N; ++k) {
for (int i = 0; i < N; ++i) {

Aik loaded once in this loop:
for (int j = 0; j < N; ++j)

Bij, Akj loaded each iteration (if N big):
B[i*N+j] += A[i*N+k] * A[k*N+j];

N3 multiplies, N3 adds
values from Aik loaded N2 times
values from Akj loaded N3 times

values from Bij loaded N3 times
net: about one load into cache per operatoin

38

keeping values in cache

can’t explicitly ensure values are kept in cache

…but reusing values effectively does this
cache will try to keep recently used values

cache optimization ideas: choose what’s in the cache
for thinking about it: load values explicitly
for implementing it: access only values we want loaded

39

a transformation

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i*N+k] * A[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

40

a transformation

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i*N+k] * A[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

40

simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; i += 2)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

B[i*N+j] += A[i*N+k] * A[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

41

simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; i += 2)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

B[i*N+j] += A[i*N+k] * A[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

41

simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; i += 2)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

B[i*N+j] += A[i*N+k] * A[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

41

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

42

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

Temporal locality in Bijs

42

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

More spatial locality in Aik

42

simple blocking – expanded

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];

}
}

}

Still have good spatial locality in Akj, Bij

42

improvement in read misses

0 100 200 300 400 500 600
N

0

5

10

15

20read misses/1K instructions of unblocked

blocked (kk+=2)
unblocked

43

simple blocking (2)

same thing for i in addition to k?

for (int kk = 0; kk < N; kk += 2) {
for (int ii = 0; ii < N; ii += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block": */
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < ii + 2; ++i)
B[i*N+j] += A[i*N+k] * A[k*N+j];

}
}

}

44

simple blocking — expanded

for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Bi+0,j += Ai+0,k+0 * Ak+0,j

Bi+0,j += Ai+0,k+1 * Ak+1,j

Bi+1,j += Ai+1,k+0 * Ak+0,j

Bi+1,j += Ai+1,k+1 * Ak+1,j
}

}
}

Now Akj reused in inner loop — more calculations per load!

45

simple blocking — expanded

for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Bi+0,j += Ai+0,k+0 * Ak+0,j

Bi+0,j += Ai+0,k+1 * Ak+1,j

Bi+1,j += Ai+1,k+0 * Ak+0,j

Bi+1,j += Ai+1,k+1 * Ak+1,j
}

}
}

Now Akj reused in inner loop — more calculations per load!
45

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

46

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

46

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

46

generalizing cache blocking
for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {

with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {

with K by J block of A, I by J block of B cached:
for i in ii to ii+I:

for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

* A[k * N + j];

Bij used K times for one miss — N2/K misses

Aik used J times for one miss — N2/J misses
Akj used I times for one miss — N2/I misses
catch: IK + KJ + IJ elements must fit in cache

46

view 2: divide and conquer

partial_square(float *A, float *B,
int startI, int endI, ...) {

for (int i = startI; i < endI; ++i) {
for (int j = startJ; j < endJ; ++j) {

...
}
square(float *A, float *B, int N) {
for (int ii = 0; ii < N; ii += BLOCK)
...

/* segment of A, B in use fits in cache! */
partial_square(

A, B,
ii, ii + BLOCK,
jj, jj + BLOCK, ...);

}
47

48

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fitsBij reused in next outer loop

probably not still in cache next time
(but, at least some spatial locality)

49

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fitsBij reused in next outer loop

probably not still in cache next time
(but, at least some spatial locality)

49

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fitsBij reused in next outer loop

probably not still in cache next time
(but, at least some spatial locality)

49

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fits

Bij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

49

array usage: kij order

Ax0 AxN

Aik

Ak0 to AkN

Bi0 to BiN

Akj

Bij

for all k: for all i: for all j: Bij+ = Aik × Akj

N calculations for Aik

1 for Akj, Bij

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
cached only if entire row fits

Bij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

49

inefficiencies

if a row doesn’t fit in cache —
cache effectively holds one element

everything else — too much other stuff between accesses

if a row does fit in cache —
cache effectively holds one row + one element

everything else — too much other stuff between accesses

50

array usage (better)

Aik to Ai+1,k+1

Ak0
to

Ak+1,N

Bi0 to Bi+1,N

more temporal locality:
N calculations for each Aik

2 calculations for each Bij (for k, k + 1)
2 calculations for each Akj (for k, k + 1)

more spatial locality:
calculate on each Ai,k and Ai,k+1 together
both in same cache block — same amount of cache loads

51

array usage (better)

Aik to Ai+1,k+1

Ak0
to

Ak+1,N

Bi0 to Bi+1,N

more temporal locality:
N calculations for each Aik

2 calculations for each Bij (for k, k + 1)
2 calculations for each Akj (for k, k + 1)

more spatial locality:
calculate on each Ai,k and Ai,k+1 together
both in same cache block — same amount of cache loads

51

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cache

Bij calculation uses strips from A
K calculations for one load (cache miss)
Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

52

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cache

Bij calculation uses strips from A
K calculations for one load (cache miss)

Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

52

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cacheBij calculation uses strips from A
K calculations for one load (cache miss)

Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

52

array usage: block

Aik block
(I × K)

Akj block
(K × J) Bij block

(I × J)

inner loop keeps “blocks” from A, B in cacheBij calculation uses strips from A
K calculations for one load (cache miss)
Aik calculation uses strips from A, B
J calculations for one load (cache miss)

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

52

cache blocking efficiency

load I × K elements of Aik:
do > J multiplies with each

load K × J elements of Akj:
do I multiplies with each

load I × J elements of Bij:
do K adds with each

bigger blocks — more work per load!

catch: IK + KJ + IJ elements must fit in cache

53

cache blocking rule of thumb

fill the most of the cache with useful data

and do as much work as possible from that

example: my desktop 32KB L1 cache

I = J = K = 48 uses 482 × 3 elements, or 27KB.

assumption: conflict misses aren’t important

54

L2 misses

0 100 200 300 400 500
N

0

2

4

6

8

10 L2 misses/1K instructions
ijk
kij

55

reasoning about loop orders

changing loop order changed locality

how do we tell which loop order will be best?
besides running each one?

56

systematic approach (1)

for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i*N+j] += A[i*N+k] * A[k*N+j];

goal: get most out of each cache miss
if N is larger than the cache:
miss for Bij — 1 comptuation
miss for Aik — N computations
miss for Akj — 1 computation
effectively caching just 1 element

57

‘flat’ 2D arrays and cache blocks

A[N]A[0]

Ax0 AxN

58

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1

way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1

way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

59

cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

60

cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

60

cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

60

associative lookup possibilities

none of the blocks for the index are valid

none of the valid blocks for the index match the tag
something else is stored there

one of the blocks for the index is valid and matches the tag

61

