\qquad

write-through v. write-back

option 1: write-through

write-through v. write-back

option 1: write-through

1

write-through v. write-back

option 2: write-back

writeback policy

write-through v. write-back

allocate on write?

processor writes less than whole cache block
block not yet in cache
two options:
write-allocate
fetch rest of cache block, replace written part
write-no-allocate
send write through to memory
guess: not read soon?

write-allocate

2-way set associative, LRU, writeback									
index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\left\|\begin{array}{l} \operatorname{mem}[0 \times 00] \\ \operatorname{mem}[0 x 01] \end{array}\right\|$	0	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 60] * \\ & \operatorname{mem}[0 x 61] \end{aligned}\right.$	* 1	1
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	\bigcirc	0				0

writing $0 \times \mathrm{FFF}$ into address 0×04 ?
index 0, tag 000001

write-allocate

2-way set associative, LRU, writeback									
index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\begin{array}{\|l\|} \text { mem }[0 \times 00] \\ \text { mem }[0 \times 01] \end{array}$	0	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 60] \star \star \\ & \operatorname{mem}[0 \times 61] \\ & \hline \end{aligned}$	+ 1	1
1	1	011000	$\left\lvert\, \begin{array}{\|l\|l\|l\|l\|l\|l\|} \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}\right.$	0	0				0

writing $0 \times \mathrm{FFF}$ into address 0×04 ?
index 0, tag 000001
step 1: find least recently used block

write-allocate

2-way set associative, LRU, writeback								
index	valid	tag	value	dirty	valid	tag	value dirty	LRU
0	1	000000	mem [0x00] mem[0x01]	0	1	011000	mem [0×60] * mem $[0 \times 61] \star$ 士	1
1	1	011000	$\operatorname{mem}[0 \times 62]$ $\operatorname{mem}[0 \times 63]$	0	0			0

writing $\hat{0} \mathrm{xFF}$ into address 0×04 ?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block

write-allocate

2 -way set associative, LRU, writeback									
index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\begin{aligned} & \operatorname{mem}[\theta \times 00] \\ & \operatorname{mem}[0 x \theta 1] \end{aligned}$	0	1	011000	$\begin{gathered} 0 \times \mathrm{efF} \\ \text { mem[0x05] } \end{gathered}$	1	0
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	0	0				0

writing $0 \times \mathrm{FF}$ into address 0×04 ?
index 0 , tag 000001
step 1: find least recently used block
step 2: possibly writeback old block
step 3a: read in new block - to get mem[0x05]
step 3b: update LRU information

write-no-allocate

2-way set associative, LRU, writeback									
index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 00] \\ & \operatorname{mem}[0 \times 01] \end{aligned}\right.$	0	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 60] \\ & \operatorname{mem}[0 \times 61] \end{aligned}\right.$	* 1	1
1	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}\right.$	0	0				\bigcirc

writing 0 x FF into address 0×04 ?
step 1: is it in cache yet?
step 2: no, just send it to memory

fast writes

write appears to complete immediately when placed in buffer memory can be much slower

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies

data cache miss rates:		2-way		fully assoc.
1 KB	8.63\%	6.97\%	5.63\%	5.34\%
2 KB	5.71\%	4.23\%	3.30\%	3.05\%
4KB	3.70\%	2.60\%	2.03\%	1.90\%
16KB	1.59\%	0.86\%	0.56\%	0.50\%
64KB	0.66\%	0.37\%	0.10\%	0.001\%
128 KB	0.27\%	0.001\%	0.0006\%	0.0006\%

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies

data cache miss rates:				
Cache size	direct-mapped	2-way	8-way	fully assoc.
1 KB	8.63%	6.97%	5.63%	5.34%
2 KB	5.71%	4.23%	3.30%	3.05%
4 KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

reasoning about cache performance

hit time: time to lookup and find value in cache
L1 cache - typically 1 cycle?
miss rate: portion of hits (value in cache)
miss penalty: extra time to get value if there's a miss
time to access next level cache or memory
miss time: hit time + miss penalty

average memory access time

AMAT $=$ hit time + miss penalty \times miss rate effective speed of memory

cache optimizations

	miss rate	hit time	miss penalty
increase cache size	better	worse	-
increase associativity	better	worse	worse?
increase block size	depends	worse	worse
add secondary cache	-	-	better
write-allocate	better	-	worse?
writeback	better	-	worse?
LRU replacement	better	$?$	worse?

average time $=$ hit time + miss rate \times miss penalty

cache optimizations by miss type

	capacity	conflict	compulsory
increase cache size	fewer misses	-	-
increase associativity	-	fewer misses	-
increase block size	-	more misses	fewer misses

exercise (1)

initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set

exercise (2)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of capacity misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64 KB cache
B. quadrupling the number of ways/set
C. quadrupling the cache size

exercise (3)

initial cache: 64 -byte blocks, 8 ways/set, 64 KB cache

If we leave the other parameters listed above unchanged, which will probably reduce the number of conflict misses in a typical program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64 KB cache
B. quadrupling the number of ways/set
C. quadrupling the cache size

a note on matrix storage

$A-N \times N$ matrix
represent as array
makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat = malloc(N * N);
A_flat[i * N + j] === A_2d_array[i][j]

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$ for (int $k=0 ; k<N ;++k)$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j^{\star /}$

```
for (int i = 0; i < N; ++i)
```

 for (int \(j=0 ; j<N ;++j)\)
 for (int \(k=0 ; k<N ;++k)\)
 \(B[i \star N+j]+=A[i * N+k] * A[k * N+j] ;\)
 /* version 2: outer loop is k, middle is $i * /$
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j^{\star /}$

```
for (int i = 0; i < N; ++i)
```

 for (int \(j=0 ; j<N ;++j)\)
 for (int \(k=0 ; k<N ;++k)\)
 \(B[i \star N+j]+=A[i * N+k] * A[k * N+j] ;\)
 /* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int $i=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

performance

alternate view 2: cycles/operation

alternate view 1: cycles/instruction

loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
kij order: $B_{i j}, A_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
kij order: $B_{i j}, A_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
```

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int $k=0 ; k<N ;++k$)
$B[i * N+j]+=A[i * N+k]$ * $A[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
$B[i * N+j]+=A[i * N+k]$ * $A[k$ * $N+j] ;$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int $k=0 ; k<N ;++k$)
$B\left[i^{*} N+j\right]+=A[i * N+k] * A[k * N+j] ;$

```
/* version 2: outer loop is k, middle is i */
```

for (int k = 0; k < N; ++k)
for (int i $=0 ; i<N ;++i)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

L1 misses

L1 miss detail (2)

L1 miss detail (1)

addresses

```
A[k*114+j] is at 10 0000 0000 0100
A[k*114+j+1] is at 10 0000 0000 1000
A[(k+1)*114+j] is at 10 0011 1001 0100
A[(k+2)*114+j] is at 10 0101 0101 1100
A[(k+9)*114+j] is at 11 0000 0000 1100
```


addresses

```
\begin{tabular}{llllll}
\(A[k \star 114+j]\) & is at & 10 & 0000 & 0000 & 0100 \\
\(A[k \star 114+j+1]\) & is at & 10 & 0000 & 0000 & 1000 \\
\(A[(k+1) \star 114+j]\) & is at & 10 & 0011 & 1001 & 0100 \\
\(A[(k+2) \star 114+j]\) & is at & 10 & 0101 & 0101 & 1100 \\
\(\cdots\) & & & & & \\
\(A[(k+9) \star 114+j]\) & is at & 11 & 0000 & 0000 & 1100
\end{tabular}
```

recall: 6 index bits, 6 block offset bits (L1)

conflict misses

powers of two - lower order bits unchanged
$A[k * 93+j]$ and $A[(k+11) * 93+j]$:
1023 elements apart (4092 bytes; 63.9 cache blocks)
64 sets in L1 cache: usually maps to same set
$A[k \star 93+(j+1)]$ will not be cached (next i loop) even if in same block as $A[k * 93+j]$

reasoning about loop orders

changing loop order changed locality
how do we tell which loop order will be best?
besides running each one?

systematic approach (1)

```
for (int k = 0; k < N; ++k)
    for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
            B[i*N+j] += A[i*N+k] * A[k*N+j];
```

goal: get most out of each cache miss
if N is larger than the cache:
miss for $B_{i j}-1$ comptuation
miss for $A_{i k}-N$ computations
miss for $A_{k j}-1$ computation
effectively caching just 1 element

locality exercise (1)

```
/* version 1 */
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 2 */
for (int j = 0; j < N; ++j)
    for (int i = 0; i < N; ++i)
        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

keeping values in cache

can't explicitly ensure values are kept in cache
...but reusing values effectively does this cache will try to keep recently used values
cache optimization ideas: choose what's in the cache for thinking about it: load values explicitly for implementing it: access only values we want loaded

'flat' 2D arrays and cache blocks

array usage: kij order

array usage: kij order

N calculations for $A_{i k}$
1 for $A_{k j}, B_{i j}$

array usage: kij order

array usage: kij order

array usage: kij order

inefficiencies

if a row doesn't fit in cache -

cache effectively holds one element
everything else - too much other stuff between accesses
if a row does fit in cache -
cache effectively holds one row + one element
everything else - too much other stuff between accesses

systematic approach (2)

```
for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; ++i) {
        A ik loaded once in this loop ( }\mp@subsup{N}{}{2}\mathrm{ times):
        for (int j = 0; j < N; ++j)
            Bij},\mp@subsup{A}{kj}{}\mathrm{ loaded each iteration (if N big):
            B[i*N+j] += A[i*N+k] * A[k*N+j];
```

N^{3} multiplies, N^{3} adds
about 1 load per operation

a transformation

```
for (int kk = 0; kk < N; kk += 2)
    for (int k = kk; k < kk + 2; ++k)
    for (int i = 0; i < N; i += 2)
        for (int j = 0; j < N; ++j)
            B[i*N+j] += A[i*N+k] * A[k*N+j];
```

split the loop over k - should be exactly the same
(assuming even N)

a transformation

```
for (int kk = 0; kk < N; kk += 2)
    for (int k = kk; k < kk + 2; ++k)
        for (int i = 0; i < N; i += 2)
            for (int j = 0; j<N; ++j)
            B[i*N+j] += A[i*N+k] * A[k*N+j];
```

split the loop over k - should be exactly the same
(assuming even N)

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int k = kk; k < kk + 2; ++k) */
        for (int i = 0; i < N; i += 2)
        for (int j = 0; j < N; ++j)
            for (int k = kk; k < kk + 2; ++k)
            B[i*N+j] += A[i*N+k] * A [k*N+j];
```

now reorder split loop - same calculations

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int k = kk; k < kk + 2; ++k) */
        for (int i = 0; i < N; i += 2)
            for (int j = 0; j < N; ++j)
            for (int k=kk;k<kk + 2; ++k)
```

now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int k = kk; k < kk + 2; ++k) */
        for (int i = 0; i < N; i += 2)
        for (int j=0; j < N; ++j)
            for (int k = kk; k < kk + 2; ++k)
            B[i*N+j] += A[i*N+k] * A[k*N+j];
```

now reorder split loop - same calculations now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
        }
    }
}
```

```
simple blocking - expanded
```

for (int kk = 0; kk < N; kk += 2) {

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            /* process a "block" of 2 k values: */
            B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
            B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
            B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
        }
        }
    }
    }
}
```

}

```
Temporal locality in \(B_{i j} \mathrm{~s}\)
```

Temporal locality in }\mp@subsup{B}{ij}{}\textrm{s

```
```

Temporal locality in }\mp@subsup{B}{ij}{}\textrm{s

```

\section*{simple blocking - expanded}
```

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
}
}
}

```

More spatial locality in \(A_{i k}\)

\section*{simple blocking - expanded}
```

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
B[i*N+j] += A[i*N+kk+0] * A[(kk+0)*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
}
}
}

```

Still have good spatial locality in \(A_{k j}, B_{i j}\)

\section*{improvement in read misses}


\section*{simple blocking (2)}
same thing for \(i\) in addition to \(k\) ?
```

for (int kk = 0; kk < N; kk += 2) {
for (int ii = 0; ii < N; ii += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
for (int k = kk; k < kk + 2; ++k)
for (int i = 0; i < ij + 2; ++i)
B[i*N+j] += A[i*N+k] * A[k*N+j];
}
}
}

```

\section*{simple blocking - expanded}
```

for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
Bi+0,j += A A M0,k+0 * A A k+0,j
Bi+0,j += A A+0,k+1 * * A A+1,j
Bi+1,j += A A i+1,k+0 * A Ak+0,j
B}\mp@subsup{B}{i+1,j}{l+,}+=\mp@subsup{A}{i+1,k+1}{*}\quad* A A k+1,
}
}
}

```

Now \(A_{k j}\) reused in inner loop - more calculations per load!

\section*{simple blocking - expanded}
```

for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
Bi+0,j += A A i+0,k+0 * * A k+0,j
Bi+0,j += A A i+0,k+1 * A Ak+1,j
B
Bi+1,j += A A+1,k+1 * A Ak+1,j
}
}
}

```

\section*{array usage (better)}

more temporal locality:
\(N\) calculations for each \(A_{i k}\)
2 calculations for each \(B_{i j}\) (for \(k, k+1\) )
2 calculations for each \(A_{k j}\) (for \(k, k+1\) )

\section*{array usage (better)}

more spatial locality:
calculate on each \(A_{i, k}\) and \(A_{i, k+1}\) together both in same cache block - same amount of cache loads

\section*{generalizing cache blocking}
```

for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {
with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {
with K by J block of A, I by J block of B cached:
for i in ii to ii+I:
for j in jj to jj+J:
for k in kk to kk+K:
B[i*N+j] += A[i*N + N]

```
\(B_{i j}\) used \(K\) times for one miss \(-N^{2} / K\) misses
\(A_{i k}\) used \(J\) times for one miss \(-N^{2} / J\) misses
\(A_{k j}\) used \(I\) times for one miss - \(N^{2} / I\) misses
catch: \(I K+K J+I J\) elements must fit in cache

\section*{generalizing cache blocking}
```

for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii <N; ii += I) {
with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {
with K by J block of A, I by J block of B cached:
for i in ii to ii+I:
for j in jj to jj+J:
for k in kk to kk+K:
B[i * N + j] += A[i * N + k]

```
\(B_{i j}\) used \(K\) times for one miss \(-N^{2} / K\) misses
\(A_{i k}\) used \(J\) times for one miss \(-N^{2} / J\) misses
\(A_{k j}\) used \(I\) times for one miss \(-N^{2} / I\) misses
catch: \(I K+K J+I J\) elements must fit in cache

\section*{generalizing cache blocking}
```

for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {
with I by K block of A hopefully cached:
for (int jj = 0; jj < N; jj += J) {
with K by J block of A, I by J block of B cached
for i in if to ii+I:
for j in jj to jj+J:
for k in kk to kk+k:
B[i*N + j] += A[i * N + k];

```
\(B_{i j}\) used \(K\) times for one miss \(-N^{2} / K\) misses
\(A_{i k}\) used \(J\) times for one miss - \(N^{2} / J\) misses
\(A_{k j}\) used \(I\) times for one miss - \(N^{2} / I\) misses
catch: \(I K+K J+I J\) elements must fit in cache

\section*{array usage: block}

\(B_{i j}\) calculation uses strips from \(A\) \(K\) calculations for one load (cache miss)

\section*{array usage: block}

inner loop keeps "blocks" from \(A, B\) in cache

\section*{array usage: block}

\(A_{i k}\) calculation uses strips from \(A, B\)
\(J\) calculations for one load (cache miss)

\section*{array usage: block}

(approx.) \(K I J\) fully cached calculations
for \(K I+I J+K J\) loads
(assuming everything stays in cache)

\section*{cache blocking efficiency}
load \(I \times K\) elements of \(A_{i k}\) :
do \(>J\) multiplies with each
load \(K \times J\) elements of \(A_{k j}\) : do \(I\) multiplies with each
load \(I \times J\) elements of \(B_{i j}\) : do \(K\) adds with each
bigger blocks - more work per load!
catch: \(I K+K J+I J\) elements must fit in cache

\section*{cache blocking rule of thumb}
fill the most of the cache with useful data and do as much work as possible from that example: my desktop 32KB L1 cache
\(I=J=K=48\) uses \(48^{2} \times 3\) elements, or 27 KB . assumption: conflict misses aren't important
```

view 2: divide and conquer
partial_square(float *A, float *B,
int startI, int endI, ...) {
for (int i = startI; i < endI; ++i) {
for (int j = startJ; j < endJ; ++j) {
}
square(float *A, float *B, int N) {
for (int ii = 0; ii < N; ii += BLOCK)
/* segment of A, B in use fits in cache! */
partial_square(
A, B,
ii, ij + BLOCK,
jj, jj + BLOCK, ...);
}

```

\section*{cache blocking and miss rate}


\section*{what about performance?}


\section*{optimized loop???}
performance difference wasn't visible at small sizes
until I optimized arithmetic in the loop
(mostly by supplying better options to GCC)

1: reducing number of loads
2: doing adds/multiplies/etc. with less instructions
3: simplifying address computations

\section*{optimized loop???}
performance difference wasn't visible at small sizes
until I optimized arithmetic in the loop
(mostly by supplying better options to GCC)

1: reducing number of loads
2: doing adds/multiplies/etc. with less instructions
3: simplifying address computations
but... how can that make cache blocking better???

\section*{optimization and bottlenecks}
arithmetic/loop efficiency was the bottleneck
after fixing this, cache performance was the bottleneck
common theme when optimizing:
X may not matter until Y is optimized

\section*{overlapping loads and arithmetic}


\section*{cache blocking: summary}
reorder calculation to reduce cache misses:
make explicit choice about what is in cache
perform calculations in cache-sized blocks
get more spatial and temporal locality
temporal locality - reuse values in many calculations before they are replaced in the cache
spatial locality — use adjacent values in calculations before cache block is replaced

\section*{cache blocking ugliness - fringe}
```

for (int kk = 0; kk < N; kk += K) {
for (int ii = 0; ii < N; ii += I) {
for (int jj = 0; jj < N; jj += J) {
for (int k = kk; k < min (kk+K,N); ++k) {
// ...
}
}
}
}

```

\section*{avoiding conflict misses}
problem - array is scattered throughout memory
observation: 32 KB cache can store 32 KB contiguous array
contiguous array is split evenly among sets
solution: copy block into contiguous array

\section*{cache blocking ugliness - fringe}
```

for (kk = 0; kk + K <= N; kk += K) {
for (ii = 0; ii + I <= N; ii += I) {
for (jj = 0; jj + J <= N; ii += J) {
// ...
}
for (; jj < N; ++jj) {
// handle remainder
}
}
for (; ii < N; ++ii) {
// handle remainder
}
}
for (; kk < N; ++kk) {
// handle remainder
}

```

\section*{register reuse}
```

for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
B[i*N+j] += A[i*N+k] * A [k*N+j];
// optimize into:
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i) {
float Aik = A[i*N+k]; // hopefully keep in register!
// faster than even cache hit!
for (int j = 0; j < N; ++j)
B[i*N+j] += Aik * A[k*N+j];
}
}
can compiler do this for us?

```

\section*{automatic register reuse}

Compiler would need to generate overlap check:
```

if ((B > A + N * N || B < A) \&\&
(B + N * N > A + N * N ||
B + N * N<A)) {
for (int k = 0; k < N; ++k) {
for (int i = 0; i < N; ++i) {
float Aik = A[i*N+k];
for (int j = 0; j< N; ++j) {
B[i*N+j] += Aik * A[k*N+j];
}
}
}
} else { /* other version */ }

```

\section*{can compiler do register reuse?}

Not easily - What if \(A=B\) ? What if \(A=\& B[10]\)
```

for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i) {
// want to preload A[i*N+k] here!
for (int j = 0; j < N; ++j) {
// but if A = B, modifying here!
B[i*N+j] += A[i*N+k] * A[k*N+j];
}
}
}

```
```

"register blocking"
for (int k = 0; k < N; ++k) {
for (int i = 0; i < N; i += 2) {
float Ai0k = A[(i+0)*N + k];
float Ailk = A[(i+1)*N + k];
for (int j = 0; j < N; j += 2) {
float Akj0 = A[k*N + j+0];
float Akj1 = A[k*N + j+1];
B[(i+0)*N + j+0] += Ai0k * Akj0;
B[(i+1)*N + j+0] += Ailk * Akj0;
B[(i+0)*N + j+1] += Ai0k * Akj1;
B[(i+1)*N + j+1] += Ailk * Akj1;
}
}
}

```

\section*{L2 misses}
```

