
Performance (finish) / Exceptions

1

Changelog

Changes made in this version not seen in first lecture:
9 November 2017: an infinite loop: correct infinite loop code
9 November 2017: move sync versus async slide earlier

1

alternate vector interfaces

intrinsics functions/assembly aren’t the only way to write vector
code

e.g. GCC vector extensions: more like normal C code
types for each kind of vector
write + instead of _mm_add_epi32

e.g. CUDA (GPUs): looks like writing multithreaded code, but each
thread is vector “lane”

2

other vector instructions

multiple extensions to the X86 instruction set for vector instructions

this class: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2
supported on lab machines
128-bit vectors

latest X86 processors: AVX, AVX2, AVX-512
256-bit and 512-bit vectors

3

other vector instructions features

AVX2/AVX/SSE pretty limiting

other vector instruction sets often more featureful:
(and require more sophisticated HW support)

better conditional handling

better variable-length vectors

ability to load/store non-contiguous values

4

addressing efficiency
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
float Bij = B[i * N + j];
for (int k = kk; k < kk + 2; ++k) {

Bij += A[i * N + k] * A[k * N + j];
}
B[i * N + j] = Bij;

}
}

tons of multiplies by N??

isn’t that slow?

5

addressing transformation
for (int kk = 0; k < N; kk += 2)
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

float Bij = B[i * N + j];
float *Akj_pointer = &A[kk * N + j];
for (int k = kk; k < kk + 2; ++k) {

// Bij += A[i * N + k] * A[k * N + j~];
Bij += A[i * N + k] * Akj_pointer;
Akj_pointer += N;

}
B[i * N + j] = Bij;

}
}

transforms loop to iterate with pointer
compiler will usually do this!
increment/decrement by N (× sizeof(float)) 6

addressing transformation
for (int kk = 0; k < N; kk += 2)
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

float Bij = B[i * N + j];
float *Akj_pointer = &A[kk * N + j];
for (int k = kk; k < kk + 2; ++k) {

// Bij += A[i * N + k] * A[k * N + j~];
Bij += A[i * N + k] * Akj_pointer;
Akj_pointer += N;

}
B[i * N + j] = Bij;

}
}

transforms loop to iterate with pointer
compiler will usually do this!
increment/decrement by N (× sizeof(float)) 6

addressing efficiency

compiler will usually eliminate slow multiplies
doing transformation yourself often slower if so

i * N; ++i into i_times_N; i_times_N += N

way to check: see if assembly uses lots multiplies in loop

if it doesn’t — do it yourself

7

8

optimizing real programs

spend effort where it matters

e.g. 90% of program time spent reading files, but optimize
computation?

e.g. 90% of program time spent in routine A, but optimize B?

9

profilers

first step — tool to determine where you spend time

tools exist to do this for programs

example on Linux: perf

10

perf usage

sampling profiler
stops periodically, takes a look at what’s running

perf record OPTIONS program
example OPTIONS:
-F 200 — record 200/second
--call-graph=dwarf — record stack traces

perf report or perf annotate

11

children/self

“children” — samples in function or things it called

“self” — samples in function alone

12

demo

13

other profiling techniques

count number of times each function is called

not sampling — exact counts, but higher overhead
might give less insight into amount of time

14

tuning optimizations

biggest factor: how fast is it actually

setup a benchmark
make sure it’s realistic (right size? uses answer? etc.)

compare the alternatives

15

16

an infinite loop

int main(void) {
while (1) {

/* waste CPU time */
}

}

If I run this on a lab machine, can you still use it?
…if the machine only has one core?

17

timing nothing

long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}

same instructions — same difference each time?
18

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

19

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

20

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

21

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

21

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

21

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

22

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

22

OS and time multiplexing

starts running instead of normal program
mechanism for this: exceptions (later)

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

23

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

24

context switch pseudocode

context_switch(last, next):
copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

25

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

26

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

27

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

28

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

28

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

29

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

30

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

31

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

32

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

33

address space mechanisms

next week’s topic

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

34

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

35

The Process

process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

36

synchronous versus asynchronous

synchronous — triggered by a particular instruction
traps and faults

asynchronous — comes from outside the program
interrupts and aborts
timer event
keypress, other input event

37

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

38

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

39

timer interrupt

(conceptually) external timer device
(usually on same chip as processor)

OS configures before starting program

sends signal to CPU after a fixed interval

40

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

41

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

42

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

43

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

44

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

45

exception implementation

detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

46

exception implementation: notes

I/textbook describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

47

locating exception handlers

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

48

running the exception handler

hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

49

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

50

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

50

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

50

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

50

why return from exception?

reasons related to protection (later)

not just ret — can’t modify process’s stack
would break the illusion of dedicated CPU/memory
program could use stack in weird way
movq $100, −8(%rsp)
...
movq −8(%rsp), %rax

(even though this wouldn’t be following calling conventions)

need to restart program undetectably!

51

exception handler structure

1. save process’s state somewhere

2. do work to handle exception

3. restore a process’s state (maybe a different one)

4. jump back to program
handle_timer_interrupt:
mov_from_saved_pc save_pc_loc
movq %rax, save_rax_loc
... // choose new process to run here
movq new_rax_loc, %rax
mov_to_saved_pc new_pc
return_from_exception

52

exceptions and time slicing

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

exception table lookup

timer interrupt

handle_timer_interrupt:
...
...
set_address_space ssh_address_space
mov_to_saved_pc saved_ssh_pc
return_from_exception

53

defeating time slices?

my_exception_table:
...

my_handle_timer_interrupt:
// HA! Keep running me!
return_from_exception

main:
set_exception_table_base my_exception_table

loop:
jmp loop

54

defeating time slices?

wrote a program that tries to set the exception table:

my_exception_table:
...

main:
// "Load Interrupt
// Descriptor Table"
// x86 instruction to set exception table
lidt my_exception_table
ret

result: Segmentation fault (exception!)

55

privileged instructions

can’t let any program run some instructions

allows machines to be shared between users (e.g. lab servers)

examples:
set exception table
set address space
talk to I/O device (hard drive, keyboard, display, …)
…

processor has two modes:
kernel mode — privileged instructions work
user mode — privileged instructions cause exception instead

56

kernel mode

extra one-bit register: “are we in kernel mode”

exceptions enter kernel mode

return from exception instruction leaves kernel mode

57

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

58

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

59

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

60

protection fault

when program tries to access memory it doesn’t own

e.g. trying to write to bad address

when program tries to do other things that are not allowed

e.g. accessing I/O devices directly

e.g. changing exception table base register

OS gets control — can crash the program
or more interesting things

61

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

62

kernel services

allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

63

Linux x86-64 system calls

special instruction: syscall

triggers trap (deliberate exception)

64

Linux syscall calling convention

before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
65

Linux x86-64 hello world

.globl _start

.data
hello_str: .asciz "Hello,␣World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

66

approx. system call handler

sys_call_table:
.quad handle_read_syscall
.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

67

Linux system call examples

mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

68

system calls and protection

exceptions are only way to access kernel mode

operating system controls what proceses can do

… by writing exception handlers very carefully

69

careful exception handlers

movq $important_os_address, %rsp

can’t trust user’s stack pointer!

need to have own stack in kernel-mode-only memory

need to check all inputs really carefully

70

protection and sudo

programs always run in user mode

extra permissions from OS do not change this
sudo, superuser, root, SYSTEM, …

operating system may remember extra privileges

71

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

72

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

72

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

73

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

73

a note on terminology (1)

real world: inconsistent terms for exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
… and more

74

a note on terminology (2)

we use the term “kernel mode”

some additional terms:
supervisor mode
privileged mode
ring 0

some systems have multiple levels of privilege
different sets of priviliged operations work

75

76

recall: square

void square(unsigned int *A, unsigned int *B) {
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

B[i * N + j] += A[i * N + k] * A[k * N + j];
}

77

square unrolled

void square(unsigned int *A, unsigned int *B) {
for (int k = 0; k < N; ++k) {
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; j += 4) {
/* goal: vectorize this */
B[i * N + j + 0] += A[i * N + k] * A[k * N + j + 0];
B[i * N + j + 1] += A[i * N + k] * A[k * N + j + 1];
B[i * N + j + 2] += A[i * N + k] * A[k * N + j + 2];
B[i * N + j + 3] += A[i * N + k] * A[k * N + j + 3];

}
}

78

handy intrinsic functions for square

_mm_set1_epi32 — load four copies of a 32-bit value into a
128-bit value

instructions generated vary; one example: movq + pshufd

_mm_mullo_epi32 — multiply four pairs of 32-bit values, give
lowest 32-bits of results

generates pmulld

79

vectorizing square

/* goal: vectorize this */
B[i * N + j + 0] += A[i * N + k] * A[k * N + j + 0];
B[i * N + j + 1] += A[i * N + k] * A[k * N + j + 1];
B[i * N + j + 2] += A[i * N + k] * A[k * N + j + 2];
B[i * N + j + 3] += A[i * N + k] * A[k * N + j + 3];

80

vectorizing square

/* goal: vectorize this */
B[i * N + j + 0] += A[i * N + k] * A[k * N + j + 0];
B[i * N + j + 1] += A[i * N + k] * A[k * N + j + 1];
B[i * N + j + 2] += A[i * N + k] * A[k * N + j + 2];
B[i * N + j + 3] += A[i * N + k] * A[k * N + j + 3];

// load four elements from B
Bij = _mm_loadu_si128(&B[i * N + j + 0]);
... // manipulate vector here
// store four elements into B
_mm_storeu_si128((__m128i*) &B[i * N + j + 0], Bij);

80

vectorizing square

/* goal: vectorize this */
B[i * N + j + 0] += A[i * N + k] * A[k * N + j + 0];
B[i * N + j + 1] += A[i * N + k] * A[k * N + j + 1];
B[i * N + j + 2] += A[i * N + k] * A[k * N + j + 2];
B[i * N + j + 3] += A[i * N + k] * A[k * N + j + 3];

// load four elements from A
Akj = _mm_loadu_si128(&A[k * N + j + 0]);
... // multiply each by A[i * N + k] here

80

vectorizing square

/* goal: vectorize this */
B[i * N + j + 0] += A[i * N + k] * A[k * N + j + 0];
B[i * N + j + 1] += A[i * N + k] * A[k * N + j + 1];
B[i * N + j + 2] += A[i * N + k] * A[k * N + j + 2];
B[i * N + j + 3] += A[i * N + k] * A[k * N + j + 3];

// load four elements starting with A[k * n + j]
Akj = _mm_loadu_si128(&A[k * N + j + 0]);
// load four copies of A[i * N + k]
Aik = _mm_set1_epi32(A[i * N + k]);
// multiply each pair
multiply_results = _mm_mullo_epi32(Aik, Akj);

80

vectorizing square

/* goal: vectorize this */
B[i * N + j + 0] += A[i * N + k] * A[k * N + j + 0];
B[i * N + j + 1] += A[i * N + k] * A[k * N + j + 1];
B[i * N + j + 2] += A[i * N + k] * A[k * N + j + 2];
B[i * N + j + 3] += A[i * N + k] * A[k * N + j + 3];

Bij = _mm_add_epi32(Bij, multiply_results);
// store back results
_mm_storeu_si128(..., Bij);

80

square vectorized

__m128i Bij, Akj, Aik, Aik_times_Akj;

// Bij = {Bi,j, Bi,j+1, Bi,j+2, Bi,j+3}
Bij = _mm_loadu_si128((__m128i*) &B[i * N + j]);
// Akj = {Ak,j, Ak,j+1, Ak,j+2, Ak,j+3}
Akj = _mm_loadu_si128((__m128i*) &A[k * N + j]);

// Aik = {Ai,k, Ai,k, Ai,k, Ai,k}
Aik = _mm_set1_epi32(A[i * N + k]);

// Aik_times_Akj = {Ai,k × Ak,j, Ai,k × Ak,j+1, Ai,k × Ak,j+2, Ai,k × Ak,j+3}
Aik_times_Akj = _mm_mullo_epi32(Aij, Akj);

// Bij= {Bi,j + Ai,k × Ak,j, Bi,j+1 + Ai,k × Ak,j+1, ...}
Bij = _mm_add_epi32(Bij, Aik_times_Akj);

// store Bij into B
_mm_storeu_si128((__m128i*) &B[i * N + j], Bij);

81

constant multiplies/divides (1)

unsigned int fiveEights(unsigned int x) {
return x * 5 / 8;

}

fiveEights:
leal (%rdi,%rdi,4), %eax
shrl $3, %eax
ret

82

constant multiplies/divides (2)

int oneHundredth(int x) { return x / 100; }

oneHundredth:
movl %edi, %eax
movl $1374389535, %edx
sarl $31, %edi
imull %edx
sarl $5, %edx
movl %edx, %eax
subl %edi, %eax
ret

1374389535
237 ≈ 1

100

83

constant multiplies/divides

compiler is very good at handling

…but need to actually use constants

84

