
Exceptions cont’d

1

rotate due tomorrow

recall: time on our testing machine

probably don’t find out what that is at the last minute?

2

anonymous feedback (1)

“Your notes and the book contradict each other (especially this last
quiz) so it’s hard to tell which to believe”

differences with the book that I don’t say are different are
unintentional

specifics would really help — at least for future semesters

3

book:contexts

generally: contexts are what needs to change to switch
threads/processes

but book includes “user stack” and “kernel stack” which is weird

short-hand for stack pointers? or just sloppy? or different definition?

4

book: saving PC, etc.

all CPUs save the the PC before starting exception handler
my slides: “for example to special register”
x86/book: special memory location

on x86: also save the stack pointer and set a new stack pointer
new stack pointer is where CPU saves things (instead of special registers)

5

anonymous feedback (2)

(paraphrased) “Question 6 on the Post-quiz for week 12 should be
dropped …The textbook never implies it is a function which is why
no one knew that was the answer.”

would have preferred if I had it made it clearer that ‘process’ in Q
was a vocab term

book: “An exception is akin to a procedure call with some
important differences:”

6

Recall: Process

illusion of dedicated machine

thread + address space

thread = illusion of dedicated processor

address space = illusion of dedicated memory

7

Recall: thread

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

illusion of dedicated processor

time multiplexing: operating system alternates which thread runs on
the processor

programs run concurrently on same CPU

mechanism for operating system to run: exceptions

8

Recall: thread

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

illusion of dedicated processor

time multiplexing: operating system alternates which thread runs on
the processor

programs run concurrently on same CPU

mechanism for operating system to run: exceptions

8

Recall: thread

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

illusion of dedicated processor

time multiplexing: operating system alternates which thread runs on
the processor

programs run concurrently on same CPU

mechanism for operating system to run: exceptions

8

Recall: address space

illuision of dedicated memory

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

9

Recall: protection

processes can’t interfere with other processes

processes can’t interfere with operating system

… except as allowed by OS

mechanism 1: kernel mode and privileged instructions

mechanism 2: address spaces

mechanism 3: exceptions for controlled access

10

kernel services

allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

11

Linux x86-64 system calls

special instruction: syscall

triggers trap (deliberate exception)

12

Linux syscall calling convention

before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
13

Linux x86-64 hello world

.globl _start

.data
hello_str: .asciz "Hello,␣World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

14

approx. system call handler

sys_call_table:
.quad handle_read_syscall
.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

15

Linux system call examples

mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

16

system calls and protection

exceptions are only way to access kernel mode

operating system controls what proceses can do

… by writing exception handlers very carefully

17

careful exception handlers

movq $important_os_address, %rsp

can’t trust user’s stack pointer!

need to have own stack in kernel-mode-only memory

need to check all inputs really carefully

18

protection and sudo

programs always run in user mode

extra permissions from OS do not change this
sudo, superuser, root, SYSTEM, …

operating system may remember extra privileges

19

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

20

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

20

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

21

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

21

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

solution: disallow this!

22

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

solution: disallow this!

22

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

solution: disallow this!

22

interrupt disabling

CPU supports disabling (most) interrupts
interrupts will wait until it is reenabled
CPU has extra state:

interrupts enabled?

keyboard interrupt pending?

timer interrupt pending?

...

exception logic

23

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
save_old_pc save_pc
movq %r15, save_r15
/* key press here */
movq %r14, save_r14
...
call move_saved_state
enable_interrupts

/* interrupt happens here! */
...

handle_keyboard_interrupt:
save_old_pc save_pc
...
call move_saved_state

24

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
save_old_pc save_pc
movq %r15, save_r15
/* key press here */
movq %r14, save_r14
...
call move_saved_state
enable_interrupts

/* interrupt happens here! */
...

handle_keyboard_interrupt:
save_old_pc save_pc
...
call move_saved_state

24

exceptions in exceptions

handle_timer_interrupt:
/* interrupts automatically disabled here */
save_old_pc save_pc
movq %r15, save_r15
/* key press here */
movq %r14, save_r14
...
call move_saved_state
enable_interrupts

/* interrupt happens here! */
...

handle_keyboard_interrupt:
save_old_pc save_pc
...
call move_saved_state

24

disabling interrupts

automatically disabled when exception handler starts

also done with privileged instruction:

change_keyboard_parameters:
disable_interrupts
...
/* change things used by

handle_keyboard_interrupt here */
...
enable_interrupts

25

a note on terminology (1)

real world: inconsistent terms for exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
… and more

26

a note on terminology (2)

we use the term “kernel mode”

some additional terms:
supervisor mode
privileged mode
ring 0

some systems have multiple levels of privilege
different sets of priviliged operations work

27

on virtual machines

process can be called a ‘virtual machine’

programmed like a complete computer…

but weird interface for I/O, memory — system calls

can we make that closer to the real machine?

28

on virtual machines

process can be called a ‘virtual machine’

programmed like a complete computer…

but weird interface for I/O, memory — system calls

can we make that closer to the real machine?

28

trap-and-emulate

privileged instructions trigger a protection fault

we assume operating system crashes

what if OS pretends the privileged instruction works?

29

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
30

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
30

was_write_to_screen()

how does OS know what caused protection fault?

option 1: hardware “type” register

option 2: check instruction:
int opcode = (*process−>registers−>pc & 0xF0) >> 4;
if (opcode == WRITE_TO_SCREEN_OPCODE)

...

31

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
32

trap-and-emulate: write-to-screen

struct Process {
AddressSpace address_space;
SavedRegisters registers;

};

void handle_protection_fault(Process *process) {
// normal: would crash
if (was_write_to_screen()) {

do_write_system_call(process);
process−>registers−>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

...
}

}
32

system virtual machines

turn faults into system calls

emulate machine that looks more like ‘real’ machine

what software like VirtualBox, VMWare, etc. does

more complicated than this:
on x86, some privileged instructions don’t cause faults
dealing with address spaces is a lot of extra work

33

process VM versus system VM
Linux process feature real machine feature
files, sockets I/O devices
threads CPU cores
mmap/brk (used by malloc) ???
signals exceptions

34

signals

Unix-like operating system feature

like interrupts for processes:

can be triggered by external process
kill command/system call

can be triggered by special events
pressing control-C
faults

can invoke signal handler (like exception handler)

35

signal API

sigaction — register handler for signal

kill — send signal to process

pause — put process to sleep until signal received

sigprocmask — temporarily block some signals from being
received

… and much more

36

example signal program

void handle_sigint(int signum) {
write(1, "Got␣signal!\n", sizeof("Got␣signal!\n"));
_exit(0);

}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read␣%s", buf);
}

}

37

example signal program

void handle_sigint(int signum) {
write(1, "Got␣signal!\n", sizeof("Got␣signal!\n"));
_exit(0);

}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read␣%s", buf);
}

}

37

example signal program

void handle_sigint(int signum) {
write(1, "Got␣signal!\n", sizeof("Got␣signal!\n"));
_exit(0);

}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read␣%s", buf);
}

}

37

x86-64 Linux signal delivery (1)

suppose: signal happens while foo() is running

OS saves registers to user stack

OS modifies user registers, PC to call signal handler

address of __restore_rt
saved registers
PC when signal happened
local variables for foo…

the stack

stack pointer
before signal delivered

stack pointer
when signal handler started

38

x86-64 Linux signal delivery (2)

handle_sigint:
...
ret

...
__restore_rt:

// 15 = "sigreturn" system call
movq $15, %rax
syscall

__restore_rt is return address for signal handler

sigreturn syscall restores pre-signal state
needed to handle caller-saved registers
also might unblock signals (like un-disabling interrupts)

39

example signals
signal default action description
SIGINT terminate control-C
SIGHUP terminate terminal closed
SIGTERM terminate request termination
SIGTSTP stop control-Z
SIGSEGV terminate Segmentation fault
SIGILL terminate Illegal instruction

40

example signals
signal default action description
SIGINT terminate control-C
SIGHUP terminate terminal closed
SIGTERM terminate request termination
SIGTSTP stop control-Z
SIGSEGV terminate Segmentation fault
SIGILL terminate Illegal instruction

40

example signals
signal default action description
SIGINT terminate control-C
SIGHUP terminate terminal closed
SIGTERM terminate request termination
SIGTSTP stop control-Z
SIGSEGV terminate Segmentation fault
SIGILL terminate Illegal instruction

40

reflecting exceptions

Linux turns faults into signals

allows process’s signal handler to try running, e.g.:

save a debug log when crashing

emulate a missing instruction

41

special signals

SIGKILL — always terminates a process

SIGSTOP — always stops a process

both cannot have a signal handler
might register one, but will never be called

42

blocking signals

avoid having signal handlers anywhere:

can instead block signals

sigprocmask system call

signal will become “pending” instead

OS will not deliver unless unblocked

analagous to disabling interrupts

43

alternatives to signal handlers

first, block a signal

then use system calls to inspect pending signals
example: sigwait

or unblock signals only when waiting for I/O
example: pselect system call

44

synchronous signal handling

int main(void) {
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGINT);
sigprocmask(SIG_BLOCK, SIGINT);

printf("Waiting␣for␣SIGINT␣(control-C)\n");
if (sigwait(&set, NULL) == 0) {

printf("Got␣SIGINT\n");
}

}

45

signal handler unsafety (0)

void foo() {
/* SIGINT might happen while foo() is running */
char *p = malloc(1024);
...

}

/* signal handler for SIGINT
(registered elsewhere with sigaction() */

void handle_sigint() {
printf("You␣pressed␣control-C.\n");

}

46

signal handler unsafety (1)

void *malloc(size_t size) {
...
to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void foo() {
/* This malloc() call interrupted */
char *p = malloc(1024);
p[0] = 'x';

}

void handle_sigint() {
// printf might use malloc()
printf("You␣pressed␣control-C.\n");

}
47

signal handler unsafety (1)

void *malloc(size_t size) {
...
to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void foo() {
/* This malloc() call interrupted */
char *p = malloc(1024);
p[0] = 'x';

}

void handle_sigint() {
// printf might use malloc()
printf("You␣pressed␣control-C.\n");

}
47

signal handler unsafety (2)

void handle_sigint() {
printf("You␣pressed␣control-C.\n");

}

int printf(...) {
static char *buf;
...
buf = malloc()
...

}

48

signal handler unsafety: timeline
foo starts

malloc: to_return = next_to_return;

handle_sigint

printf

malloc: to_return = next_to_return;
malloc: next_to_return += ...;

printf: store/use returned buf

foo: malloc returns pointer printf is using!

49

signal handler unsafety (3)

foo() {
char *p = malloc(1024)... {

to_return = next_to_return;
handle_sigint() { /* signal delivered here */

printf("You␣pressed␣control-C.\n") {
buf = malloc(...) {
to_return = next_to_return;
next_to_return += size;
return to_return;

}
...

}
}
next_to_return += size;
return to_return;

}
/* now p points to buf used by printf! */

}

50

signal handler unsafety (3)

foo() {
char *p = malloc(1024)... {

to_return = next_to_return;
handle_sigint() { /* signal delivered here */

printf("You␣pressed␣control-C.\n") {
buf = malloc(...) {
to_return = next_to_return;
next_to_return += size;
return to_return;

}
...

}
}
next_to_return += size;
return to_return;

}
/* now p points to buf used by printf! */

}

50

signal handler safety

POSIX (standard that Linux follows) defines “async-signal-safe”
functions

these must work correctly in signal handlers no matter what they
interrupt

includes: write, _exit

does not include: printf, malloc, exit

51

summary

exceptions — mechanism to for OS to run
to help out user programs
in response to external events
in repsonse to errors

process — “virtual machine” illusion
thread + address space

signals — process analogy to exceptions

52

53

setjmp/longjmp

jmp_buf env;

main() {
if (setjmp(env) == 0) { // like try {
...
read_file()
...

} else { // like catch
printf("some␣error␣happened\n");

}
}

read_file() {
...
if (open failed) {

longjmp(env, 1) // like throw
}
...

}

54

implementing setjmp/longjmp

setjmp:
copy all registers to jmp_buf
… including stack pointer

longjmp
copy registers from jmp_buf
… but change %rax (return value)

55

setjmp psuedocode

setjmp: looks like first half of context switch

setjmp:
movq %rcx, env−>rcx
movq %rdx, env−>rdx
movq %rsp + 8, env−>rsp // +8: skip return value
...
save_condition_codes env−>ccs
movq 0(%rsp), env−>pc
movq $0, %rax // always return 0
ret

56

longjmp psuedocode

longjmp: looks like second half of context switch

longjmp:
movq %rdi, %rax // return a different value
movq env−>rcx, %rcx
movq env−>rdx, %rdx
...
restore_condition_codes env−>ccs
movq env−>rsp, %rsp
jmp env−>pc

57

setjmp weirdness — local variables

Undefined behavior:
int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

58

setjmp weirdness — fix

Defined behavior:
volatile int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

59

on implementing try/catch

could do something like setjmp()/longjmp()

but setjmp is slow

60

on implementing try/catch

could do something like setjmp()/longjmp()

but setjmp is slow

61

low-overhead try/catch (1)

main() {
printf("about␣to␣read␣file\n");
try {
read_file();

} catch(...) {
printf("some␣error␣happened\n");

}
}
read_file() {
...
if (open failed) {

throw IOException();
}
...

}
62

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

63

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

63

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

63

low-overhead try/catch (2)
main:

...
call printf

start_try:
call read_file

end_try:
ret

main_catch:
movq $str, %rdi
call printf
jmp end_try

read_file:
pushq %r12
...
call do_throw
...

end_read:
popq %r12
ret

program counter range action recurse?
start_try to end_try jmp main_catch no
read_file to end_read popq %r12, ret yes
anything else error —

lookup table

not actual x86 code to run
track a “virtual PC” while looking for catch block

63

lookup table tradeoffs

no overhead if throw not used

handles local variables on registers/stack, but…

larger executables (probably)

extra complexity for compiler

64

65

