
CS 3330 Introduction Daniel and Charles

CS 3330 Computer Architecture 1

lecturers
• Charles and I will be splitting lectures

same(ish) lecture in each section

Grading

CS 3330 Computer Architecture 3

Take Home Quizzes:
10% (10% dropped)

Midterms (2): 30%

Final Exam
(cumulative): 20%

Homework + Labs:
40%

late policy

❑ exceptional circumstance? contact us.

❑ otherwise, for homework only:

❑ -10% 0 to 48 hours late

❑ -15% 48 to 72 hours late

❑ -100% otherwise

❑ late quizzes, labs: no
we release answers talk to us if illness,
etc.

CS 3330 Computer Architecture 4

Coursework

❑ quizzes — pre/post week of lecture
❑ you will need to read

❑ labs — grading: did you make reasonable progress?
❑ collaboration permitted

❑ homework assignments — introduced by lab (mostly)
❑ due at 9am on the next lab day (mostly)

complete individually

❑ exams — multiple choice/short answer — 2 + final

CS 3330 Computer Architecture 5

Collaboration Policy

• You are encouraged to discuss
homework and final project
assignments with other students
in the class, as long as the
following rules are followed:

CS 3330 Computer Architecture 6

Collaboration
Policy

CS 3330 Computer Architecture 7

You can’t view other peoples
code. That includes pseudo
code.

You can discuss the
assignment generally.

Sharing code in labs is allowed

Attendance?

CS 3330 Computer Architecture 8

Lecture: strongly
recommended but not
required. lectures are
recorded to help you

review

Lab: electronic, remote-
possible submission,

usually.

lecture/lab/HW

synchronization

CS 3330 Computer Architecture 9

main problem: want to
cover material before you

need it in lab/HW

labs/HWs not quite
synchronized with

lectures

Quizzes?

• linked off course website (First quiz, due 11 of September)

• pre-quiz, on reading – released by Saturday evening, due

Tuesdays, 12:15 PM (Which is just before lecture)

• post-quiz, on lecture topics — released Thursday evening,

due following Saturday, 11:59 PM

• each quiz 90 minute time limit (+ adjustments if SDAC

says) lowest 10% (approx. 2 quizzes) will be dropped

(Quizzes are multiple choice and normally about 5 questions)

CS 3330 Computer Architecture 10

TAs/Office Hours

• Office hours will be posted on the
calendar on the website

• Still discussion hours with TAs.

• Office hours will start next week.

CS 3330 Computer Architecture 11

Your TODO list

❑ Quizzes!
❑ post-quiz after Thursday lecture pre-quiz

before Tuesday lecture

❑ lab account and/or C environment working

❑ lab accounts should happen by this weekend

❑ before lab next week

CS 3330 Computer Architecture 12

Questions?

CS 3330 Computer Architecture 13

Let’s Build
a simple
machine

CS 3330 Computer Architecture 14

How will store information in our
machine?

CS 3330 Computer Architecture 15

0.0V
0.2V

0.9V
1.1V

0 1 0

Everything is bits

• Each bit is 0 or 1

• Why bits? Electronic Implementation
• Reliably transmitted on noisy and inaccurate wires

CS 3330 Computer Architecture 16

There are different ways to
represent bits

CS 3330 Computer Architecture 17

Encoding Byte Values

• Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

• Base 16 number representation
• Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
• Write FA1D37B16 in C as

• 0xFA1D37B
• 0xfa1d37b

CS 3330 Computer Architecture 18

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Q: 0x605C + 0x5 = 0x606

Boolean Algebra

• Developed by George Boole in 19th Century
• Algebraic representation of logic

• Encode “True” as 1 and “False” as 0
• The symbols here are how you do these operation in c

CS 3330 Computer Architecture 19

And

◼ A&B = 1 when both A=1 and B=1

Or

◼ A|B = 1 when either A=1 or B=1

Not

◼ ~A = 1 when A=0

Exclusive-Or (Xor)

◼ A^B = 1 when either A=1 or B=1, but not both

Not an I

Boolean Algebra
• Could we develop a machine that adds two one-bit numbers using any of

these gates
• Encode “True” as 1 and “False” as 0

CS 3330 Computer Architecture 20

And

◼ A&B = 1 when both A=1 and B=1

Or

◼ A|B = 1 when either A=1 or B=1

Not

◼ ~A = 1 when A=0

Exclusive-Or (Xor)

◼ A^B = 1 when either A=1 or B=1, but not both

Simple One Bit Adder (Not Quite)

CS 3330 Computer Architecture 21

Suppose that we had extra place to hold that
last result bit what gate could we use to find it?

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Binary for 2

Simple Half Adder (Not Quite)

CS 3330 Computer Architecture 22

And Gate

Half Adder Bread board

CS 3330 Computer Architecture 23

http://www.circuitstoday.com/wp-content/uploads/2012/03/ripple-carry-
adder.png

Ripple Carry Adder

CS 3330 Computer Architecture 24

Now we have a machine that can add large
numbers

(Bundle of wires)

CS 3330 Computer Architecture 26

A 64 bits

B 64 bits

A
D

D
E

R

carry

Registers

64 bundle of wires

CS 3330 Computer Architecture 27

How do we program it?

We could put one and zeros in
manually

CS 3330 Computer Architecture 28

The solution: Abstraction

CS 3330 Computer Architecture 29

Layers of abstraction

CS 3330 Computer Architecture 30

Gates / Transistors / Wires / Registers

Hardware Design Language: HCLRS/ VHDL

Machine code 0010 0001

Assembly addq %rdi %rsi

“Higher-level” language: C x += y

Y86 64 bit simplified

Now we have a machine
that can add large numbers

CS 3330 Computer Architecture 31

A 64 bits

B 64 bits

A
D

D
E

R

How do we
program it?

carry

Registers

0010 0001

We are computer
scientists why should we
care about hardware?

CS 3330 Computer Architecture 32

Why

• Understanding computer architecture will
help you:

• Write fast programs

• And understand strange program
behaviors like segmentation faults.

Let’s look at a simple example

CS 3330 Computer Architecture 34

Memory System Performance Example

• Hierarchical memory organization

• Performance depends on access patterns
• Including how step through multi-dimensional array

CS 3330 Computer Architecture 35

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

program performance: issues

• (Hardware) Parallelism
• How do we write program to take

advantage of parrallelism

• (Hardware) caching
• accessing things recently accessed is faster

• need reuse of data/code

• (Software) (more in other classes: algorithmic

efficiency) (Time and Space Complexity Big O)

CS 3330 Computer Architecture 36

Let’s start by looking at high-
level over of architecture of a
system

CS 3330 Computer Architecture 37

processors and memory

CS 3330 Computer Architecture 38

processor

I/O

Bridge

memory

to I/O devices

keyboard, mouse, wifi,…

CS 3330 Computer Architecture 39

More detail

Memory Address bus
Get me value at
0x0003

http://www.ti.com/product/MSP430G2553

Memory Data bus
Your data was:

0xffff

CS 3330 Computer Architecture 40Schematic

http://www.ti.com/product/MSP430G2553

Endianess

CS 3330 Computer Architecture 41

CS 3330 Computer Architecture 42

little endian

(least significant byte has lowestaddress)

big endian

(most significant byte has lowestaddress)

value

0x
…
DE

address
0xFFFFFFFF

0xFFFFFFFE

0xFFFF
…
FFFD

0x00042006

0x00042005

0x00042004

0x00042003

0x00042002

0x00042001

0x00042000

0x14

0x45

int *x = (int*)0x42000;

cout << *x << endl;

0x06

0x05

0x04

0x03

0x02

0x01

0x00

0x030x00041FFF

0x0004
…
1FFE

0x00000002

0x00000001

0x
…
60

0xFE

0xE0

0x03020100 = 50462976

0x00010203 = 66051

Endianess

memory

CS 3330 Computer Architecture 43

value

0x
…
DE

0x
…
60

0xFE

address
0xFFFFFFFF

0xFFFFFFFE

0xFFFF
…
FFFD

0x00042006

0x00042005

0x00042004

0x00042003

0x00042002

0x00042001

0x00042000

0x00041FFF

0x0004
…
1FFE

0x00000002

0x00000001

0x00000000
0xE0
0xA0

0x14

0x45

0x06

0x05

0x04

0x03

0x02

0x01

0x00

0x03

value

0x
…
FE

0x
…
06

0xDE

address
0x00000000

0x00000001

0x0000
…
0002

0x00041FFE

0x00041FFF

0x00042000

0x00042001

0x00042002

0x00042003

0x00042004

0x00042005

0x0004
…
2006

0xFFFFFFFD

0xFFFFFFFE

0xFFFFFFFF
0x45
0x14

0xA0

0xE0

0x60

0x03

0x00

0x01

0x02

0x03

0x04

0x05

Endianess

CS 3330 Computer Architecture 44

little endian

(least significant byte has lowestaddress)

big endian

(most significant byte has lowestaddress)

value

0x
…
DE

address
0xFFFFFFFF

0xFFFFFFFE

0xFFFF
…
FFFD

0x00042006

0x00042005

0x00042004

0x00042003

0x00042002

0x00042001

0x00042000

0x14

0x45

0x06

0x05

0x04

0x03

0x02

0x01

0x00

0x030x00041FFF

0x0004
…
1FFE

0x00000002

0x00000001

0x
…
60

0xFE

0xE0

0x03020100 = 50462976

0x00010203 = 66051

0x03020101 = 50462977

To write efficient code we also
need to understand the
process of going from c to
machine code?

What does the
compiler Do?

CS 3330 Computer Architecture 45

compilation pipeline

CS 3330 Computer Architecture 46

compile

main.c

(C code)

main.s

(assembly)

assemble

main.o (object

file) (machine
code)

linking

main.exe

(executable)
(machine code)

main.c:
#include <stdio.h>

int main(void) {

printf("Hello, World!\n");

}

printf.o

(object file)

compilation

pipeline

CS 3330 Computer Architecture 47

main.c

(C code)

compile

main.s

(assembly)

assemble

main.o (object

file) (machine
code)

linking

main.exe

(executable)
(machine code)

27

compilation pipeline

CS 3330 Computer Architecture 48

compile

main.c

(C code)

main.s

(assembly)

assemble

main.o (object

file) (machine
code)

linking

main.exe

(executable)
(machine code)

main.c:
#include <stdio.h>

int main(void) {

printf("Hello, World!\n");

}

compilation pipeline

CS 3330 Computer Architecture 49

compile

main.c

(C code)

main.s

(assembly)

assemble

main.o (object

file) (machine
code)

linking

main.exe

(executable)
(machine code)

main.c:
#include <stdio.h>

int main(void) {

printf("Hello, World!\n");

}

printf.o

(object file)

what’s in those files?

CS 3330 Computer Architecture 50

#include <stdio.h>

int main(void) {

puts("Hello, World!");

return 0;

}

hello.c

what’s in those files?

CS 3330 Computer Architecture 51

#include <stdio.h>

int main(void) {

puts("Hello, World!");

return 0;

}

hello.c

.text

main:

sub $8, %rsp

mov $.Lstr, %rdi

call puts

xor %eax, %eax

add $8, %rsp

ret

.data

.Lstr: .string "Hello,␣World!"

hello.s

what’s in those files?

CS 3330 Computer Architecture 52

#include <stdio.h>

int main(void) {

puts("Hello, World!");

return 0;

}

hello.c

.text

main:

sub $8, %rsp

mov $.Lstr, %rdi

call puts

xor %eax, %eax

add $8, %rsp

ret

.data

.Lstr: .string "Hello,␣World!"

hello.s

101
101
000

Calling convention

what’s in those

files?

CS 3330 Computer Architecture 53

#include <stdio.h>

int main(void) {

puts("Hello, World!");

return 0;

}

hello.c

.text

main:

sub $8, %rsp

mov $.Lstr, %rdi

call puts

xor %eax, %eax

add $8, %rsp

ret

.data

.Lstr: .string "Hello,␣World!"

hello.s

text (code) segment:

48 83 EC 08 BF 00 00 00 00 E8 00 00

00 00 31 C0 48 83 C4 08 C3

datasegment:
48 65 6C 6C 6F 2C 20 57 6F 72 6C 00

relocations:
take 0s at and replace with
text, byte 6 () data segment, byte 0

text, byte 10 () address of puts

symboltable:

main text byte 0

hello.o

what’s in those

files?

CS 3330 Computer Architecture 54

#include <stdio.h>

int main(void) {

puts("Hello, World!");

return 0;

}

hello.c

.text

main:

sub $8, %rsp

mov $.Lstr, %rdi

call puts

xor %eax, %eax

add $8, %rsp

ret

.data

.Lstr: .string "Hello,␣World!"

hello.s

hello.o
text (code) segment:
48 83 EC 08 BF 00 00 00 00 E8 00 00

00 00 31 C0 48 83 C4 08 C3

data segment:
48 65 6C 6C 6F 2C 20 57 6F 72 6C 00

relocations:
take 0s at and replace with
text, byte 6 () data segment, byte 0

text, byte 10 () address of puts

symboltable:

main text byte 0

28

what’s in those

files?

CS 3330 Computer Architecture 55

#include <stdio.h>

int main(void) {

puts("Hello, World!");

return 0;

}

hello.c

.text

main:

sub $8, %rsp

mov $.Lstr, %rdi

call puts

xor %eax, %eax

add $8, %rsp

ret

.data

.Lstr: .string "Hello,␣World!"

hello.s

hello.o
text (code) segment:
48 83 EC 08 BF 00 00 00 00 E8 00 00

00 00 31 C0 48 83 C4 08 C3

data segment:
48 65 6C 6C 6F 2C 20 57 6F 72 6C 00

relocations:
take 0s at and replace with
text, byte 6 () data segment, byte 0

text, byte 10 () address of puts

symboltable:

main text byte 0

Code puts

Data hello

Code hello

Data puts

Don’t know
where it will
get put in
memory the
linker will fill
it in

Instructions for link to find where
put the addresses of data

what’s in thosefiles?

CS 3330 Computer Architecture 56

#include <stdio.h>

int main(void) {

puts("Hello, World!");

return 0;

}

hello.c

.text

main:

sub $8, %rsp mov

$.Lstr, %rdi

call puts

xor %eax, %eax

add $8, %rsp

ret

.data

.Lstr: .string "Hello,␣World!"

hello.s

hello.o
text (code) segment:
48 83 EC 08 BF 00 00 00 00 E8 00 00

00 00 31 C0 48 83 C4 08 C3

data segment:
48 65 6C 6C 6F 2C 20 57 6F 72 6C 00

relocations:
take 0s at and replace with
text, byte 6 () data segment, byte 0

text, byte 10 () address of puts

symboltable:

main text byte 0
48 65 6C 6C 6F 2C 20 57 6F

72 6C 00

(actually binary, but shown as hexadecimal) …
48 83 EC 08 BF A7 02 04 00

E8 08 4A 04 00 31 C0 48

83 C4 08 C3 …

…(code from stdio.o) …

…

…(data from stdio.o) …

hello.exe

+ stdio.o

Updated
with address
of hello

Word

Memory Address bus
Get me value at
x0003

http://www.ti.com/product/MSP430G2553

Memory Data bus
Your data was:

xffff

CS 3330 Computer Architecture 57

http://www.ti.com/product/MSP430G2553

