

last time

arrays versus pointers
left shift — arithmetic and logical

left /right shift versus multiply/divide by power of two

bitwise and /or /xor

topics today

some other C details

interlude: using the command line

then, doing interesting things with bitwise operators

some lists

short sentinel = -9999;
short *x;

x = malloc(sizeof(short)+*4);
x[3] = sentinel;

typedef struct range_t {
unsigned int length;
short *ptr;

} range;

range x;

x.length = 3;

x.ptr = malloc(sizeof(short)*3);

X
x[0] x[1] x[2] x[3]

- (117213 [=9999]

X
Ietn: | L1 T2[3]
ptr:

typedef struct node_t {
short payload;
list *next;

} node;

node *x;

x = malloc(sizeof(node_t));

*x

D_/_.payload: 1

ptr: >

some lists

< on stack

short sentinel = -9999;
short *x;

x = malloc(sizeof(short)+*4);
x[3] = sentinel;

typedef struct range_t {
unsigned int length;
short *ptr;

} range;

range x;

x.length = 3;

x.ptr = malloc(sizeof(short)*3);

or r)<(egs on heap —
x[0] x[1] x[2] x[3]

(117213 [=9999]

X
len:

ptr:

typedef struct node_t {
short payload;
list *next;

} node;

node *x;

x = malloc(sizeof(node_t));

struct

struct rational {
int numerator;
int denominator;
}3
J/ ...
struct rational two_and_a_half;
two_and_a_half.numerator = 5;
two_and_a_half.denominator = 2;
struct rational *pointer = &two_and_a_half;
printf ("%d/%d\n",
pointer->numerator,
pointer->denominator);

struct

struct rational {
int numerator;
int denominator;
}3
J/ ...
struct rational two_and_a_half;
two_and_a_half.numerator = 5;
two_and_a_half.denominator = 2;
struct rational *pointer = &two_and_a_half;
printf ("%d/%d\n",
pointer->numerator,
pointer->denominator);

typedef

instead of writing:

unsigned int a;
unsigned 1int b;
unsigned 1int c;
can write:

typedef unsigned 1int uint;

uint a;
uint b;
uint c;

typedef struct (1)

struct other_name_for_rational {
int numerator;
int denominator;
}3
typedef struct other_name_for_rational rational;
J/ ...
rational two_and_a_half;
two_and_a_half.numerator = 5;
two_and_a_half.denominator = 2;
rational *pointer = &two_and_a_half;
printf("%d/%d\n",
pointer->numerator,
pointer->denominator);

typedef struct (1)

struct other_name_for_rational {
int numerator;
int denominator;
}3
typedef struct other_name_for_rational rational;
J/ ...
rational two_and_a_half;
two_and_a_half.numerator = 5;
two_and_a_half.denominator = 2;
rational *pointer = &two_and_a_half;
printf("%d/%d\n",
pointer->numerator,
pointer->denominator);

typedef struct (2)

struct other_name_for_rational {

int
int
}3
typedef
// same
typedef
int
int

numerator;
denominator;

struct other_name_for_rational rational;

as:

struct other_name_for_rational {
numerator;

denominator;

} rational;

typedef struct (2)

struct other_name_for_rational {

int
int
}3
typedef
// same
typedef
int
int

numerator;
denominator;

struct other_name_for_rational rational;

as:

struct other_name_for_rational {
numerator;

denominator;

} rational;

typedef struct (2)

struct other_name_for_rational {
int numerator;
int denominator;
+s
typedef struct other_name_for_rational rational;
// same as:
typedef struct other_name_for_rational {
int numerator;
int denominator;
} rational;

// almost the same as:
typedef struct {

int numerator;

int denominator;
} rational;

structs aren’t references

typedef struct {
long a; long b; long c;

} tr ple; return address
callee saved
registers
triple foo; foo.c
_ _ _ foo.b
foo.a = foo.b = foo.c = 3; foo . a
triple bar = foo; bar.c
_ . bar.b
bar.a = 4; bar 3

// foo is 3, 3, 3
// bar is 4, 3, 3

some lists

short sentinel = -9999;
short *x;

x = malloc(sizeof(short)+*4);
x[3] = sentinel;

typedef struct range_t {
unsigned int length;
short *ptr;

} range;

range x;

x.length = 3;

x.ptr = malloc(sizeof(short)*3);

typedef struct node_t {
short payload;
list *next;

} node;

node *x;

x = malloc(sizeof(node_t));

< on stack

or r)<(egs on heap —
x[0] x[1] x[2] x[3]

(117213 [=9999]

X
len:
ptr:

10

linked lists / dynamic allocation

typedef struct list_t {
int item;
struct list_t #*next;
} list;
// ...

11

linked lists / dynamic allocation

typedef struct list_t {
int item;
struct list_t *next;
} list;
// ...

11

linked lists / dynamic allocation

typedef struct list_t {
int item;
struct list_t #*next;
} list;
// ...

list* head = malloc(sizeof(list));
/* C++: new list; */

head->item = 42;

head->next = NULL;

// ...

free(head);
/* C++: delete list *x/

11

linked lists / dynamic allocation

typedef struct list_t {
int item;
struct list_t #*next;
} list;
// ...

list* head = malloc(sizeof(list));
/* C++: new list; */

head->item = 42;

head->next = NULL;

// ...

free(head) ;
/* C++: delete list *x/

—[head]|
[

item: 42

next: NULL

11

dynamic arrays

int *array = malloc(sizeof(int)*100);
// C++: new 1nt[100]
for (i = 0; i < 100; ++1i) {
array[i1] = 1;
}
// ...
free(array); // C++: delete[] array

12

dynamic arrays

int *array = malloc(sizeof(int)*100);
// C++: new 1nt[100]
for (i = 0; i < 100; ++1i) {
array[i1] = 1;
}
// ...
free(array); // C++: delete[] array

- —

‘somewhere on heap\
0|1 [2[3]4[5]6 .]9
) 400 bytes)

12

interlude: command line tips

cr4bd@reiss-lenovo:~$ man man

13

Manual pager utils MAN(1)

man [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L locale] [-m sys-
tem[,...]] [-M path] [-5 list] [-e extension] [-i]-I] [--regex|--wildcard]
[--names-only] [-a] [-u] [--no-subpages] [-P pager] [-r prompt] [-7] [-E encoding]
[--no-hyphenation] [--no-justification] [-p string] [-t] [-T[device]] [-H[browser]]
[-X[dpi]] [-Z] [[section] page ...] ...

man -k [apropos options] regexp ...

man -K [-w|-W] [-5 list] [1| I] [--regex] [section] term ...

man -f [whatis options] page ...

man -1 [-C file] [-d] [- D] [--warnings[warnings]] [-R encoding] [-L locale] [-P pager]
[-r prompt] [-7] [-E encoding] [-p string] [-t] [-T[device]] [-H[browser]] [-X[dpi]]
[-Z] file ...

man -w|-W [-C file] [-d] [-D] page ...

man -c [-C file] [-d] [-D] page ...

man [-2?V]

DESCRIPTION

man is the system's manual pager. Each page argument given to man is normally the name
of a program, utility or function. The manual page associated with each of these argu-
ments 1is then found and displayed. A section, if provided, will direct man to look
only in that section of the manual. The default action is to search in all of the
available sections following a pre-defined order ("1 n 1 8 3 2 3posix 3pm 3perl 54 9 6
7" by default, unless overridden by the SECTION directive in Jetc/manpath.config), and
to show only the first page found, even if page exists in several sections.

14

man

man

File Edit View Search Terminal Help

man

man

1s
Display the manual page for the item (program) ls.

-a intro

Display, 1in succession, all of the available intro manual pages contained within
the manual. It is possible to quit between successive displays or skip any of
them.

-t alias | lpr -Pps

Format the manual page referenced by “alias', usually a shell manual page, into the
default troff or groff format and pipe it to the printer named ps. The default
output for groff is usually PostScript. man --help should advise as to which pro-
cessor is bound to the -t option.

-1 -Tdvi ./foo.1x.97z > ./foo.1x.dvi

This command will decompress and format the nroff source manual page ./foo.1x.gz
into a device independent (dvi) file. The redirection is necessary as the -T flag
causes output to be directed to stdout with no pager. The output could be viewed
with a program such as xdvi or further processed into PostScript using a program
such as dvips.

-k printf
Search the short descriptions and manual page names for the keyword printf as regu-
lar expression. Print out any matches. Equivalent to apropos printf.

-f smail
Lookup the manual pages referenced by smail and print out the short descriptions of
any found. Equivalent to whatis smail.

15

man chmod

File Edit View Search Terminal Help
CHMOD(1) User Commands CHMOD(1)

chmod - change file mode bits

SYNOPSIS

chmod [OPTION]... MODE[,MODE]... FILE...
chmod [OPTION]... OCTAL-MODE FILE...
chmod [OPTION]... --reference=RFILE FILE...

BDESCRIPTION

This manual page documents the GNU version of chmod. chmod changes the file mode bits
of each given file according to mode, which can be either a symbolic representation of
changes to make, or an octal number representing the bit pattern for the new mode bits.

The format of a symbolic mode is [ugoa...][[-+=][perms...]...], where perms is either
zero or more letters from the set rwxXst, or a single letter from the set ugo. Multi-
ple symbolic modes can be given, separated by commas.

A combination of the 1letters wugoa controls which users' access to the file will be
changed: the user who owns it (u), other users in the file's group (g), other users not
in the file's group (o), or all users (a). If none of these are given, the effect is
as if (a) were given, but bits that are set in the umask are not affected.

The operator + causes the selected file mode bits to be added to the existing file mode
bits of each file; - causes them to be removed; and = causes them to be added and
causes unmentioned bits to be removed except that a directory's unmentioned set user
and group ID bits are not affected.

The letters rwxXst select file mode bits for the affected users: read (r), write (w),

16

chmod

chmod

—--recursive o0g-r

/home /USER

17

chmod

chmod

-—-recursive og-r /home/USER

others and group (student)
~ remove
read

17

chmod

chmod

-—-recursive og-r /home/USER

user (yourself) / group / others
- remove / + add
read / write / execute or search

17

tar

the standard Linux/Unix file archive utility

Table of contents: tar tf filename.tar
eXtract: tar xvf filename.tar

Create: tar cvf filename.tar directory

(v: verbose; f: file — default is tape)

18

Tab completion and history

19

stdio.h

C does not have <iostream>

instead <stdio.h>

20

stdio

cr4bd@powerl
/if22/cr4bd ; man stdio

STDIO(3) Linux Programmer's Manual STDIO(3)

NAME
stdio - standard dinput/output library functions

SYNOPSIS
#include <stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION

The standard I/O0 Tlibrary provides a simple and efficient

buffered stream I/0 interface. Input and output 1is mapped

logical data streams and the physical I/0 characteristics are

concealed. The functions and macros are Tlisted below;
information is available from the individual man pages.

21

stdio

STDIO(3) Linux Programmer's Manual STDIO(3)

NAME
stdio - standard input/output library functions

List of functions

Function Description

clearerr check and reset stream status
fclose close a stream

printf formatted output conversion

22

printf

v int custNo = 1000;

. const char *name = "Jane Smith"
3 printf("Customer #%d: %s\n " ,
s custNo, name);

s // "Customer #1000: Jane Smith"
s // same as:

; cout << "Customer #" << custNo
8 << " "M << name << endl;

23

printf

v int custNo = 1000;

. const char *name = "Jane Smith"
3 printf("Customer #%d: %s\n " ,
s custNo, name);

s // "Customer #1000: Jane Smith"
s // same as:

; cout << "Customer #" << custNo
8 << " " << name << endl;

23

printf

v int custNo = 1000;

. const char *name = "Jane Smith"
3 printf("Customer #%d: %s\n "
s custNo, name);

s // "Customer #1000: Jane Smith"
s // same as:

; cout << "Customer #" << custNo
8 << " "M << name << endl;

format string must match types of argument

b

23

printf formats quick reference

Specifier
%S

%p

%d

%u

26X

%ld

%t

[%%
0€

(074
/Og
262

Argument Type

char *
any pointer
int/short/char

unsigned int/short/char
unsigned int/short/char

long
double/float

double/float

double/float
(no argument)

Example(s)
Hello, World!
0x4005d4

42

42

2a

42

42.000000
0.000000
4.200000e+01
4,200000e-19
42, 4.2e-19

24

printf formats quick reference

Specifier Argument Type

%s
%p
(074

70
%u
%X
%ld
%f

0/
0€

0’/
/Og
262

char *
any pointer
int/short/char

Example(s)
Hello, World!
0x4005d4

42

Vo)

hort /char
Idetailed docs: man 3 pr'intfl
llg [4

double/float
double/float

double/float
(no argument)

42.000000
0.000000
4.200000e+01
4,200000e-19
42, 4.2e-19

%

24

unsigned and signed types

type min max

signed int = signed =int -2%' 2%1 1
unsigned int = unsigned 0 2% 1
signed long = long —203 903 _q
unsigned long 0 264 1

25

unsigned /signed comparison trap (1)

int x = -1;
unsigned int y = 0;
printf("%d\n", x < y);

26

unsigned /signed comparison trap (1)

int x = -1;
unsigned int y = 0;
printf("%d\n", x < y);

result is ©

26

unsigned /signed comparison trap (1)

int x = -1;
unsigned int y = 0;
printf("%d\n", x < y);

result is O

short solution: don’'t compare signed to unsigned:
(long) x < (long) vy

26

unsigned /sign comparison trap (2)

int x = -1;
unsigned int y = 0;
printf("%d\n", x < y);

compiler converts both to same type first
int if all possible values fit

otherwise: first operand (X, y) type from this list:
unsigned long
long
unsigned 1int
int

27

C evolution and standards

1978: Kernighan and Ritchie publish The C Programming Language
— "K&R C”

very different from modern C

28

C evolution and standards

1978: Kernighan and Ritchie publish The C Programming Language
— "K&R C”

very different from modern C

1989: ANSI standardizes C — C89/C90/-ans1i
compiler option: —ansi, -—std=c90
looks mostly like modern C

28

C evolution and standards

1978: Kernighan and Ritchie publish The C Programming Language
— "K&R C”

very different from modern C

1989: ANSI standardizes C — C89/C90/-ans1i
compiler option: —ansi, -—std=c90
looks mostly like modern C

1999: ISO (and ANSI) update C standard — C99
compiler option: —std=c99
adds: declare variables in middle of block
adds: // comments

28

C evolution and standards

1978: Kernighan and Ritchie publish The C Programming Language
— "K&R C”

very different from modern C

1989: ANSI standardizes C — C89/C90/-ans1i
compiler option: —ansi, -—std=c90
looks mostly like modern C

1999: ISO (and ANSI) update C standard — C99
compiler option: —std=c99
adds: declare variables in middle of block
adds: // comments

2011: Second ISO update — C11

28

undefined behavior example (1)

#include <stdio.h>
#include <limits.h>
int test(int number) {
return (number + 1) > number;

}

int main(void) {
printf("%d\n", test(INT_MAX));
}

29

undefined behavior example (1)

#include <stdio.h>
#include <limits.h>
int test(int number) {
return (number + 1) > number;

}

int main(void) {
printf("%d\n", test(INT_MAX));
}

without optimizations: 0

29

undefined behavior example (1)

#include <stdio.h>
#include <limits.h>
int test(int number) {
return (number + 1) > number;

}

int main(void) {
printf("%d\n", test(INT_MAX));
}

without optimizations: 0

with optimizations: 1

29

undefined behavior example (2)

int test(int number) {
return (number + 1) > number;

ks
Optimized:
test:

mov1 $1, %eax # eax « 1
ret

Less optimized:

test:
leal 1(%rdi), %eax # eax + rdi + 1
cmpl %eax, %edi
setl %a'l # al < eax < edi
movzbl %al, %eax # eax + al (pad with zeros)
ret

30

undefined behavior

compilers can do whatever they want

what you expect
crash your program

common types:

signed integer overflow/underflow
out-of-bounds pointers

integer divide-by-zero

writing read-only data
out-of-bounds shift

31

undefined behavior

why undefined behavior?

different architectures work differently

allow compilers to expose whatever processor does “naturally”
don't encode any particular machine in the standard

flexibility for optimizations

32

and/or/xor

AND [0 1
00 0
10 1

&

conditionally clear bit
conditionally keep bit

- Ol 0
= OO
=

conditionally set bit

conditionally flip bit

33

extract 0x3 from 0x1234

unsigned get_second_nibblel_bitwise(unsigned value)
return (value >> 4) & 0OxF; // OxF: 00001111
// like (value / 16) % 16

}

unsigned get_second_nibble2_bitwise(unsigned value)

return (value & OxFO) >> 4; // OxFO: 11110000
// like (value % 256) / 16;

34

extract 0x3 from 0x1234

get_second_nibblel_bitwise:
movl %edi, %eax
shrl $4, %eax
andl $OxF, %eax
ret

get_second_nibble2_bitwise:
movl %edi, %eax
andl $OxFO, %eax
shrl $4, %eax
ret

35

bit-puzzles

future assignment

bit manipulation puzzles

solve some problem with bitwise ops
maybe that you could do with normal arithmetic, comparisons, etc.

why?
good for thinking about HW design
good for understanding bitwise ops
unreasonably common interview question type

36

note: ternary operator

w=(x?2y : z)

if (x) {w=y; } else { w

Z,

}

37

one-bit ternary

(x 2y : z)
constraint: x, y, and z are 0 or 1

now: reimplement in C without if/else/| | /etc.
(assembly: no jumps probably)

38

one-bit ternary

(x 2y : z)

constraint: x, y, and z are 0 or 1

now: reimplement in C without if/else/| | /etc.

(assembly: no jumps probably)

divide-and-conquer:

(x 2y :0)
(x 2 0 : 2)

38

one-bit ternary parts (1)

constraint: x, y, and z are 0 or 1

(x 2y :0)

39

one-bit ternary parts (1)

constraint: x, y, and z are 0 or 1

(x 2y :0)
y=0 y=1

x=0|0 0

x=110 1

39

one-bit ternary parts (2)

(x 2y :0)=(x&y)

40

one-bit ternary parts (2)

(x 2y :0)=(x&y)

(x 2 0 : z)
opposite X: ~X

((~x) & z)

40

one-bit ternary

constraint: x, y, and z are 0 or 1
(x 2y : z)

(x 2y :0) | (x?20 : z)
(x &y) | ((*x) & 2)

41

multibit ternary

constraint: x is 0 or 1

old solution ((x & Yy)
(x 2y : z)

(~x) & 1)

only gets least sig. bit

42

multibit ternary

constraint: x is 0 or 1

old solution ((x & y) |

(x 2y
(x 2y

z)
0) |

(x 20

(~x) & 1)

z)

only gets least sig. bit

42

constructing masks

constraint: x is 0 or 1

(x 2y :0)

if x=1: want 1111111111..1 (keep y)
if x = 0: want 0000000000...0 (want 0)

43

constructing masks

constraint: x is 0 or 1

(x 2y :0)

if x=1: want 1111111111..1 (keep y)
if x = 0: want 0000000000...0 (want 0)

a trick: —x (-1is 1111..1)

43

constructing masks

constraint: x is 0 or 1

(x 2y :0)

if x=1: want 1111111111..1 (keep y)
if x = 0: want 0000000000...0 (want 0)

a trick: —x (-1is 1111..1)
((-x) &y)

44

constructing other masks

constraint: X is 0 or 1

(x 2 0 ¢ 2)

if x=X0: want 1111111111..1
if x =@ 1: want 0000000000...0
mask: >xX

45

constructing other masks

constraint: X is 0 or 1

(x 2 0 ¢ 2)

if x =X0: want 1111111111..1
if x =@ 1: want 0000000000...0
mask: >xX —(x"1)

45

multibit ternary

constraint: x is 0 or 1

old solution ((x & y) | (~x) & 1)

(x 2y : z)
(x 2y :0)|
((=x) & y) |

(x 2 0 : 2)
((=(x M1)) & z)

only gets least sig. bit

46

fully multibit

constraint—xis 0 or 1

(x 2y : z)

47

fully multibit

constraint—xis 0 or 1

(x 2y : z)

easy Cway: !x=0or1, !!Ix=00r1
x86 assembly: testq %rax, %rax then sete/setne
(copy from ZF)

47

fully multibit

constraint—xis 0 or 1

(x 2y : z)

easy Cway: !x=0or1, !!Ix=00r1
x86 assembly: testq %rax, %rax then sete/setne
(copy from ZF)

(x 2y :0) | (x?20: 2z)
((=rx) & y) | ((=!x) & z)

47

simple operation performance

typical modern desktop processor:

bitwise and/or/xor, shift, add, subtract, compare — ~ 1 cycle
integer multiply — ~ 1-3 cycles
integer divide — ~ 10-150 cycles

(smaller/simpler/lower-power processors are different)

48

simple operation performance

typical modern desktop processor:

bitwise and/or/xor, shift, add, subtract, compare — ~ 1 cycle
integer multiply — ~ 1-3 cycles
integer divide — ~ 10-150 cycles

(smaller/simpler/lower-power processors are different)

add /subtract/compare are more complicated in hardware!

but much more important for typical applications

48

problem: any-bit

is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: ! (! (x))
another easy solution if you have — or + (lab exercise)

what if we don’t have ! or — or +

49

problem: any-bit

is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: ! (! (x))
another easy solution if you have — or + (lab exercise)

what if we don’t have ! or — or +

how do we solve is X is two bits? four bits?

49

problem: any-bit

is any bit of x set?

goal: turn 0 into 0, not zero into 1
easy C solution: ! (! (x))
another easy solution if you have — or + (lab exercise)

what if we don’t have ! or — or +

how do we solve is X is two bits? four bits?

((x & 1) | ((x > 1) & 1) | ((x > 2) & 1) |

((x > 3) & 1))

49

wasted work (1)

((x & 1) | ((x > 1) &1) | ((x > 2) & 1) | ((x > 3) & 1))

ingeneral: (x & 1) | (y & 1) == (x | y) & 1

50

wasted work (1)

((x & 1) | ((x > 1) &1) | ((x > 2) & 1) | ((x > 3) & 1))

ingeneral: (x & 1) | (y & 1) == (x | y) & 1

(x | (x> 1) | (x> 2) | (x> 3)) &1

50

wasted work (2)

4-bit any set: (x | (x >> 1)| (x >> 2) | (x > 3)) &1
performing 3 bitwise ors

..each bitwise or does 4 OR operations

U UL

(x)
(x >> 1)4

wasted work (2)

4-bit any set: (x | (x >> 1)| (x >> 2) | (x > 3)) &1
performing 3 bitwise ors
..each bitwise or does 4 OR operations

but only result of one of the 4!

(x)
(x >> 1)4

UU UL

51

any-bit: divide and conquer

four-bit input = = x1x01374

X | (x >> 1) = (21]0)(z2|z1) (2s]2) (24| 23) = Y1Y2Y3y4

52

any-bit: divide and conquer

four-bit input = = x1x01374
x | (x >> 1) = (21]0)(22|21)(23|22) (4] 73) = Yy192y3Y4

y | (y >> 2) = (11]0)(y2]0)(y3|y1) (ya|2) = 21222324

2y = (yaly2) = ((x2|x1)|(x4]23)) = 24|23|72|21 “is any bit set?”

52

any-bit: divide and conquer

four-bit input = = x1x01374
x | (x >> 1) = (21]0)(wa|ar)(z3]w2) (wa]23) = Y1920304
y | (y >> 2) = (y1]0)(y2]0)(y3|y1)(ya|y2) = 21222324

2y = (yaly2) = ((x2|x1)|(x4]23)) = 24|23|72|21 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

52

any-bit-set: 32 bits

unsigned 1int any(unsigned int x) {
x = (x >> 1) | x;

x = (x > 2) | x;
X = (x > 4) | x;
X = (x >> 8) | x;
x = (x >> 16) | x;

return x & 1;

bitwise strategies

use paper, find subproblems, etc.

mask and shift
(x & OXFO) >> 4

factor/distribute
(x &1) [(y &1) == (x [y) &1l

divide and conquer

common subexpression elimination
return ((—=!!x) & vy) | ((=!x) & z)
becomes
d = Ix; return ((=!d) & vy) | ((-d) & z)

54

exercise

Which of these will swap last and second-to-last bit of an
unsigned 1int 27 (abcdef becomes abcdfe)
/* version A */

return ((x >> 1) & 1) | (x & (~1));

/* version B *x/
return ((x >> 1) & 1) | ((x << 1) & (~2)) | (x & (~3));

/* version C %/
return (x & (~3)) | ((x & 1) << 1) | ((x >> 1) & 1);

/* version D */
return (((x & 1) << 1) | ((x & 3) >> 1)) N x;

55

version A

/* version A x/
return ((x >> 1) & 1) | (x & (~1));

// ANANNANNNANNNNNANANN

// abcdef --> Oabcde -> 00000e
// ANANANANNNNNN
// abcdef --> abcde0®

// ANANANNNANNNANNANANANNNNANNANANANNNANNN

// 00000e | abcde® = abcdee

version B

/* version B *x/
return ((x >> 1) & 1) | ((x << 1) & (~2)) | (x & (~3));

//
//

//
//

//
//

ANANANNNNNANNANNANN

abcdef —--> Oabcde —--> 00OO0O0e

ANNANNNNNNNANNNNANN

abcdef --> bcdef® --> bcde®0O

ANANANNNNAN

abcdef --> abcd0eo

57

version C

/* version C *x/
return (x & (~3)) | ((x & 1) << 1) | ((x >> 1) & 1);

//
//

//
//

//
//

ANANANANNNNNA

abcdef —--> abcdoOo

ANNANANNNANNNNNNN

abcdef —--> 00000f --> O000OFO

ANANNNANANNANNNANN

abcdef --> Oabcde --> 00000e

58

version D

/* version D x/
return (((x & 1) << 1) | ((x & 3) >> 1)) " x;

//
//

//
//

//
//

ANANANANNNNNNNANNANN

abcdef —--> 0OOOOFf —--> OOOOFO

ANNANNNNANNANNNNN

abcdef —--> 0000ef --> OOOOEe

ANANANNNNNNNANNNNNNNNNANANNANANNNNNANNNNNNNN

0000fe N abcdef --> abcd(f XOR e) (e XOR f)

59

expanded code

int lastBit = x & 1;

int secondTolLastBit = x & 2;

int rest = x & ~3;

int lastBitInPlace = lastBit << 1;

int secondTolLastBitInPlace = secondTolLastBit >> 1;
return rest | lastBitInPlace | secondTolLastBitInPlace;

60

61

ISAs being manufactured today

x86 — dominant in desktops, servers

ARM — dominant in mobile devices

POWER — Wii U, IBM supercomputers and some servers
MIPS — common in consumer wifi access points

SPARC — some Oracle servers, Fujitsu supercomputers
z/Architecture — IBM mainframes

780 — TI calculators

SHARC — some digital signal processors

RISC V — some embedded

63

microarchitecture v. instruction set

microarchitecture — design of the hardware

“generations” of Intel’s x86 chips
different microarchitectures for very low-power versus laptop/desktop
changes in performance/efficiency

instruction set — interface visible by software

what matters for software compatibility
many ways to implement (but some might be easier)

64

ISA variation

instruction set | instr. # normal approx.
length registers # instrs.
x86-64 1-15 byte 16 1500
Y86-64 1-10 byte 15 18
ARMv7 4 byte* 16 400
POWERS 4 byte 32 1400
MIPS32 4 byte 31 200
ltanium 41 bits* 128 300
/80 1-4 byte 7 40
VAX 1-14 byte 8 150
z/Architecture | 2-6 byte 16 1000
RISC V 4 byte* 31 500%*

65

other choices: condition codes?

instead of:

cmpq %rll, 2%rl2
je somewhere

could do:

/* _B_ranch if _EQ_ual */
beq %rll, %rl2, somewhere

66

other choices: addressing modes

ways of specifying operands. examples:
x86-64: 10 (%rll,%rl12,4)
ARM: %r11 << 3 (shift register value by constant)

VAX: ((%r11)) (register value is pointer to pointer)

67

other choices: number of operands

add srcl, src2, dest
ARM, POWER, MIPS, SPARC, ..

add src2, srcl=dest
x86, AVR, Z80, ..

VAX: both

68

other choices: instruction complexity

instructions that write multiple values?
x86-64: push, pop, movsb, ..

more?

69

CISC and RISC

RISC — Reduced Instruction Set Computer

reduced from what?

70

CISC and RISC

RISC — Reduced Instruction Set Computer

reduced from what?

CISC — Complex Instruction Set Computer

70

some VAX instructions

MATCHC haystackPtr, haystackLen, needlePtr, needlelLen
Find the position of the string in needle within haystack.

POLY x, coefficientsLen, coefficientsPtr
Evaluate the polynomial whose coefficients are pointed to by coefficientPtr at the
value x.

EDITPC sourcelLen, sourcePtr, patternLen, patternPtr
Edit the string pointed to by sourcePtr using the pattern string specified by
patternPtr.

71

microcode

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

loop in hardware???
typically: lookup sequence of microinstructions (“microcode")

secret simpler instruction set

72

Why RISC?

complex instructions were usually not faster
complex instructions were harder to implement

compilers, not hand-written assembly

73

Why RISC?

complex instructions were usually not faster
complex instructions were harder to implement

compilers, not hand-written assembly

assumption: okay to require compiler modifications

73

typical RISC ISA properties

fewer, simpler instructions

seperate instructions to access memory
fixed-length instructions

more registers

no “loops” within single instructions

no instructions with two memory operands

few addressing modes

74

ISAs: who does the work?

CISC-like (harder to implement, easier to use assembly)
choose instructions with particular assembly language in mind?
more options for hardware to optimize?

..but more resources spent on making hardware correct?
easier to specialize for particular applications
less work for compilers

RISC-like (easier to implement, harder to use assembly)
choose instructions with particular HW implementation in mind?
less options for hardware to optimize?
simpler to build/test hardware
..S0 more resources spent on making hardware fast?
more work for compilers

75

Is CISC the winner?

well, can't get rid of x86 features
backwards compatibility matters

more application-specific instructions

but..compilers tend to use more RISC-like subset of instructions

common x86 implementations convert to RISC-like
“microinstructions”

relatively cheap because lots of instruction preprocessing needed in ‘fast’
CPU designs (even for RISC ISAs)

76

Y86-64 instruction set

based on x86

omits most of the 1000+ instructions

leaves

addq
subq
andq
Xorq
nop

jmp pushq

jcc popq

cmovCC movq (renamed)
call hlt (renamed)
ret

much, much simpler encoding

78

Y86-64 instruction set

based on x86

omits most of the 1000+ instructions

leaves

addq
subq
andq
Xorq
nop

jmp pushq

jcc popq

cmovCC movqg (renamed)
call hlt (renamed)
ret

much, much simpler encoding

79

Y86-64: movq

destination i — immediate

r — register
m — memory

source

\\SEmovq

80

Y86-64: movq

destination . .

source i — |mr.ned|ate
I — register
\ m — memory

SDmovq

irmovq immevq 1imevq
rrmovg rmmovq rimevq
mrmovq mmmovq mimevq

80

Y86-64: movq

destination . .

source 1——|mqmmam
r — register
\ m — memory

SDmovq

irmovq
rrmovq rmmovq

mrmovq

80

	C for lab/HW
	lists in HW
	struct
	lists in HW: revisted
	dynamic allocation and lists

	interlude: command line tips
	even more C
	printf
	signed and unsigned
	undefined behavior in C

	bitwise masks
	bit puzzles
	ternary operator
	any-bit?
	general strategies

	bitwise exercise
	ISAS made today
	microarchitectures versus ISAs
	ISA choices
	CISC v RISC
	really complex instructions: VAX
	why RISC
	typical RISC properties
	philosophical gap: who does the work?
	Is CISC the winner?

	Y86-64 assembly
	mov

