
1

last time

vector instructions / SIMD

profilers

time multiplexing/context switching

address space ideaS

2

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

3

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

3

OS and time multiplexing

starts running instead of normal program
mechanism for this: exceptions (later)

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

4

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

5

context switch pseudocode

context_switch(last, next):
copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

6

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

7

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

8

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

9

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

9

program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

10

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

11

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

12

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

13

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

14

address space mechanisms

next topic

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

15

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

16

The Process

process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

17

synchronous versus asynchronous

exceptions: OS gets control — two kinds of ways

synchronous — triggered by a particular instruction
traps and faults

asynchronous — comes from outside the program
interrupts and aborts
timer event
keypress, other input event

18

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
19

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
20

timer interrupt

(conceptually) external timer device
(usually on same chip as processor)

OS configures before starting program

sends signal to CPU after a fixed interval

21

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
22

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
23

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

24

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
25

exception implementation

detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

26

exception implementation: notes

I/textbook describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

27

locating exception handlers

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

28

running the exception handler

hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

29

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

30

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

30

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

30

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

30

exception handler structure

1. save process’s state somewhere

2. do work to handle exception

3. restore a process’s state (maybe a different one)

4. jump back to program
handle_timer_interrupt:
mov_from_saved_pc save_pc_loc
movq %rax, save_rax_loc
... // choose new process to run here
movq new_rax_loc, %rax
mov_to_saved_pc new_pc
return_from_exception

31

exceptions and time slicing

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

exception table lookup

timer interrupt

handle_timer_interrupt:
...
...
set_address_space ssh_address_space
mov_to_saved_pc saved_ssh_pc
return_from_exception

32

defeating time slices?

my_exception_table:
...

my_handle_timer_interrupt:
// HA! Keep running me!
return_from_exception

main:
set_exception_table_base my_exception_table

loop:
jmp loop

33

defeating time slices?

wrote a program that tries to set the exception table:

my_exception_table:
...

main:
// "Load Interrupt
// Descriptor Table"
// x86 instruction to set exception table
lidt my_exception_table
ret

result: Segmentation fault (exception!)

34

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
35

privileged instructions

can’t let any program run some instructions

allows machines to be shared between users (e.g. lab servers)

examples:
set exception table
set address space
talk to I/O device (hard drive, keyboard, display, …)
…

processor has two modes:
kernel mode — privileged instructions work
user mode — privileged instructions cause exception instead

36

kernel mode

extra one-bit register: “are we in kernel mode”

exceptions enter kernel mode

return from exception instruction leaves kernel mode

37

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
38

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

39

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

40

protection fault

when program tries to access memory it doesn’t own

e.g. trying to write to bad address

when program tries to do other things that are not allowed

e.g. accessing I/O devices directly

e.g. changing exception table base register

OS gets control — can crash the program
or more interesting things

41

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

aborts
42

kernel services

allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

43

Linux x86-64 system calls

special instruction: syscall

triggers trap (deliberate exception)

44

Linux syscall calling convention

before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
45

Linux x86-64 hello world

.globl _start

.data
hello_str: .asciz "Hello,␣World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

46

approx. system call handler

sys_call_table:
.quad handle_read_syscall
.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

47

Linux system call examples

mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

48

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

49

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

49

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

50

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

50

a note on terminology (1)

real world: inconsistent terms for exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
… and more

51

a note on terminology (2)

we use the term “kernel mode”

some additional terms:
supervisor mode
privileged mode
ring 0

some systems have multiple levels of privilege
different sets of priviliged operations work

52

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

53

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

53

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

53

address translation

Program A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

53

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

54

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

54

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

54

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

54

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

54

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

55

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

55

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

55

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

55

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

55

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

56

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

56

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

56

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

56

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

56

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

56

switching page tables

part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

needs a page table entry pointing to it
(alternate: HW changes page table when starting exception handler)

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

57

switching page tables

part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

needs a page table entry pointing to it
(alternate: HW changes page table when starting exception handler)

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

57

switching page tables

part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
needs a page table entry pointing to it
(alternate: HW changes page table when starting exception handler)

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

57

switching page tables

part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
needs a page table entry pointing to it
(alternate: HW changes page table when starting exception handler)

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

57

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

58

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

58

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

58

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

58

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

58

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

58

on virtual address sizes

virtual address size = size of pointer?

often, but — sometimes part of pointer not used

example: typical x86-64 only use 48 bits
rest of bits have fixed value

virtual address size is amount used for mapping

59

address space sizes

amount of stuff that can be addressed = address space size
based on number of unique addresses

e.g. 32-bit virtual address = 232 byte virtual address space

e.g. 20-bit physical addresss = 220 byte physical address space

what if my machine has 3GB of memory (not power of two)?
not all addresses in physical address space are useful
most common situation (since CPUs support having a lot of memory)

60

address space sizes

amount of stuff that can be addressed = address space size
based on number of unique addresses

e.g. 32-bit virtual address = 232 byte virtual address space

e.g. 20-bit physical addresss = 220 byte physical address space

what if my machine has 3GB of memory (not power of two)?
not all addresses in physical address space are useful
most common situation (since CPUs support having a lot of memory)

60

61

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

62

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

62

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

62

why return from exception?

reasons related to protection (later)

not just ret — can’t modify process’s stack
would break the illusion of dedicated CPU/memory
program could use stack in weird way
movq $100, −8(%rsp)
...
movq −8(%rsp), %rax

(even though this wouldn’t be following calling conventions)

need to restart program undetectably!

63

system calls and protection

exceptions are only way to access kernel mode

operating system controls what proceses can do

… by writing exception handlers very carefully

64

protection and sudo

programs always run in user mode

extra permissions from OS do not change this
sudo, superuser, root, SYSTEM, …

operating system may remember extra privileges

65

	exceptions
	the context switch
	preview: memory protection
	preview: the process
	exception types
	hardware for exceptions
	exception handlers
	privileged instructions
	system calls
	system call wrappers
	exception terminology note

	virtual memory
	address translation overview
	simple paging with four pages
	switching address spaces
	…kernel-only
	on address space sizes

	backup slides
	time multiplexing
	why return-from-exception
	system call, careful
	aside: protection and sudo

