Caching 3

last time
tag / index / offset

lookup in associative caches

replacement policies

least recently used — best miss rate assuming locality
random — simplest to implement

write policies:
write-through versus write-back
write-allocate versus write-no-allocate

hit time, miss penalty, miss rate
average memory access time (AMAT)

cache design tradeoffs

making any cache look bad

1.

A

access enough blocks, to fill the cache

access an additional block, replacing something
access last block replaced

access last block replaced

access last block replaced

but — typical real programs have locality

cache optimizations
miss rate hit time miss penalty

increase cache size better worse —
increase associativity better worse worse?
increase block size depends worse worse
add secondary cache — — better
write-allocate better — worse?
writeback 7?7 — worse?
LRU replacement better 7 worse?

average time = hit time 4 miss rate X miss penalty

cache optimizations by miss type

capacity conflict compulsory
increase cache size fewer misses fewer misses —
increase associativity — fewer misses —
increase block size — more misses fewer misses

(assuming other listed parameters remain constant)

prefetching
seems like we can't really improve cold misses...

have to have a miss to bring value into the cache?

prefetching
seems like we can't really improve cold misses...

have to have a miss to bring value into the cache?

solution: don't require miss: ‘prefetch’ the value before it's accessed

remaining problem: how do we know what to fetch?

common access patterns

suppose recently accessed 16B cache blocks are at:
0x48010, 0x48020, 0x48030, 0x48040

guess what's accessed next

common access patterns

suppose recently accessed 16B cache blocks are at:
0x48010, 0x48020, 0x48030, 0x48040

guess what's accessed next

common pattern with instruction fetches and array accesses

prefetching idea
look for sequential accesses
bring in guess at next-to-be-accessed value

if right: no cache miss (even if never accessed before)

if wrong: possibly evicted something else — could cause more
misses

fortunately, sequential access guesses almost always right

split caches; multiple cores

instr. data instr. data
cache cache cache cache
(core 1) (core 1) (core 2) (core 2)
I I I I

unified unified

L2 cache L2 cache

(core 1) (core 2)

A A
Y
L3 cache

(shared between cores)

hierarchy and instruction/data caches

typically separate data and instruction caches for L1

(almost) never going to read instructions as data or vice-versa
avoids instructions evicting data and vice-versa
can optimize instruction cache for different access pattern

easier to build fast caches: that handles less accesses at a time

10

inclusive versus exclusive

L2 inclusive of L1 L2 exclusive of L1

everything in L1 cache duplicated in L2 L2 contains different data than L1
adding to L1 also adds to L2 adding to L1 must remove from L2
probably evicting from L1 adds to L2

L2 cache L2 cache

cache cache

777777777727777777 277777777277277277
2777777777777 AR 27777777777777
707777777727777777 70777772777777777 27727777777777777
277777777777777777 27777777777777777 277777777777777777
707777777777777777 77777772777777777 277777777777777777
Ty Yy 277777777777777777
707777777777777777 [20000000000000020 777777777777777777
Ry 2727777777772777777
7777777777 77777 7777777777 77777777
277772727777772777 Ty
2277777777 77777 277777777777 7777
207777777707777777 227077277777277277
277777777777777777 277777777777777777
707777777727777777 SIS s s s, 277777777777777777
277777777777777777 27777777777777777 277777777777777777
707777777777777777 /2 20020220222222227 277777777777777777
Ay 277777777777777777
222222227227222227 227227227227227227

R

77777777777777777

ey

77777777777777777

70707722722 772777

11

inclusive versus exclusive

L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L2 cache

inclusive policy:

no extra work on eviction
but duplicated data

L1 cache
easier to explain when

i Lk shared by multiple L(k — 1) caches?

222222227227222227

inclusive versus exclusive

exclusive policy:

avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore

L2 exclusive of L1

L1 cache

L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L2 cache

272777777777777777

11

average memory access time
AMAT = hit time + miss penalty x miss rate

effective speed of memory

12

AMAT exercise (1)
90% cache hit rate

hit time is 2 cycles

30 cycle miss penalty

what is the average memory access time?

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles

how much do we have to increase the hit rate for this to be
worthwhile?

13

AMAT exercise (1)

90% cache hit rate

hit time is 2 cycles

30 cycle miss penalty

what is the average memory access time?

5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles

how much do we have to increase the hit rate for this to be
worthwhile?

13

AMAT exercise (1)

90% cache hit rate

hit time is 2 cycles

30 cycle miss penalty

what is the average memory access time?

5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles

how much do we have to increase the hit rate for this to be
worthwhile?

to at least 10% — 1/30 ~ 94%

13

exercise: AMAT and multi-level caches

suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with

10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time

what is the average memory access time for the L1 cache?

14

exercise: AMAT and multi-level caches

suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with

10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time

what is the average memory access time for the L1 cache?
340.1-(10+0.2-100) = 6 cycles

14

exercise: AMAT and multi-level caches

suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with

10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time

what is the average memory access time for the L1 cache?

34+0.1-(10+0.2-100) = 6 cycles
L1 miss penalty is 10 + 0.2 - 100 = 30 cycles

14

exercise (1)

initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)

A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)

B. quadrupling the number of sets

C. quadrupling the number of ways/set

15

exercise (2)

initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)

A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set

C. quadrupling the cache size

16

exercise (3)

initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of conflict misses in a typical program?
(Multiple may be correct.)

A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set

C. quadrupling the cache size

17

cache accesses and C code (1)

int scaleFactor;

int scaleByFactor (int value) {
return value * scaleFactor;
}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?

18

cache accesses and C code (1)

int scaleFactor;

int scaleByFactor (int value) {
return value * scaleFactor;
}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?
4-byte read of scaleFactor
8-byte read of return address

18

possible scaleFactor use

for (int 1

= 0; 1 < size; ++i) {
array[i] =

scaleByFactor(array[i]);

}

19

misses and code (2)

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret
suppose each time this is called in the loop:

return address located at address Ox7ffffffe43b8
scaleFactor located at address Ox6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
| return address | scaleFactor

tag
index
offset

20

misses and code (2)

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret
suppose each time this is called in the loop:

return address located at address Ox7ffffffe43b8
scaleFactor located at address Ox6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
| return address | scaleFactor

tag OxfFfffffc Oxd7
index | 0x10e 0x10e
offset | 0x38 0x20

20

misses and code (2)

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret
suppose each time this is called in the loop:

return address located at address Ox7ffffffe43b8
scaleFactor located at address Ox6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
| return address | scaleFactor

tag OxfFfffffc Oxd7
index | 0x10e 0x10e
offset | 0x38 0x20

20

conflict miss coincidences?

obviously | set that up to have the same index
have to use exactly the right amount of stack space...

but gives a possible intuition for conflict misses:

bad luck giving the same index for unrelated values

matching experimental results:
most conflict misses involve a small portion of the sets

21

C and cache misses (warmup 1)

int array[4];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1l];
even_sum += array[2];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?

22

some possiblities

array[0]

array[1]

array[2]

array[3]

Q1: how do cache blocks correspond to array elements?

not enough information provided!

23

some possiblities

one cache block

array[0]larray[1]

array[2]larray[3]

if array[0] starts at beginning of a cache block...
array split across two cache blocks

memory access

cache contents afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

read array[1] (hit)

{array[0], array[1]}

read array[2] (miss)

{array[2], array[3]}

read array[3] (hit)

{array[2], array[3]}

24

some possiblities

one cacC

he block

*x%x%% larray[0@]larray[1]

array[2]larray[3]| ++++

if array[0] starts right in the middle of a cache block

array split across three cache

blocks

memory access

cache contents afterwards

(empty)

read array[0] (miss)

{**x%, array[0]}

read array[1] (miss)

{array[1l], array[2]}

read array[2] (hit)

{array[1l], array[2]}

read array[3] (miss)

{array[3], ++++}

25

some possiblities

one cache block

xxx*x larfray[0]|larray[l]lanfray[2]larray[3]| p+++

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

memory access

cache contents afterwards

(empty)

read array[0] byte 0 (miss)

{ *¥***, array[0] byte 0 }

read array[0] byte 1-3 (miss)

{ array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit)

{ array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit)

{ array[0] byte 1-3, array[2], array[3] byte O }

read array[2] byte 1-3 (miss)

{part of array[2], array[3], ++++}

read array[3] (hit)

{part of array[2], array[3], ++++}

26

aside: alignment

compilers and malloc/new implementations usually try align values

align = make address be multiple of something

most important reason: don't cross cache block boundaries

27

C and cache misses (warmup 2)

int array[4];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];

even_sum += array[2];

odd_sum += array[1l];

odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do

anything funny).
Assume array[0] at beginning of cache block.

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?

28

C and cache misses (warmup 3)
int array[8];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];

odd_sum += array[1];

even_sum += array[2];

odd_sum += array[3];

even_sum += array[4];

odd_sum += array[5];

even_sum += array[6];

odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).
Assume array[0] at beginning of cache block.

How many data cache misses on a 2-set direct-mapped cache with
8B blocks? 20

exercise solution

one cache block
(index 0)

array[0]

array[1]

array[2]

array[3]

array[4]

array[5]

arra’ .-

32

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1)

(index 0)

larray [0]

array[l]larray[zj

array [3]larray [4]

array[5]

arra’ .-

32

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1)

(index 0)

Iarray [0]

array[l]larray[zj

array [3]Iarray [4]larray[5]

arra’ .-

memory access

set 0 afterwards

set 1 afterwards

— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)

read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

32

exercise solution
one cache block one cache block one cache block one cache block
(index 1) (index 0) (index 1) (index 0)

i i] i T i]
observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

memory access set 0 afterwards set 1 afterwards

— (empty) (empty)

read array[0] (miss) {array[0], array[1]} (empty)

read array[1] (hit) {array[0], array[1]} (empty)

read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

arra’ .-

exercise solution

one cache block one cache block one cache block one cache block
(index 1)

(index 1)

(index 0)

(index 0)

T | T

I

observation: what happens in set 0 doesn't affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

arra’ .-

memory access

set 0 afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

read array[1] (hit)

{array[0], array[1]}

read array[4] (miss)

{array[4], array[5]}

read array[5] (hit)

{array[4], array[5]}

33

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0) (index 1)

(index 0)

larray [0]|array [1]larray [2]

array [3]larray [4]

array[5]

arra’ .-

memory access

set 0 afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

read array[1] (hit)

{array[0], array[1]}

read array[4] (miss)

{array[4], array[5]}

read array[5] (hit)

{array[4], array[5]}

33

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1) (index 0)

larray [0]

array[l]larray[zj

array [3]larray [4]larray[5]

arra’ .-

memory access

read array[2] (miss)

read array[3] (hit)

read array[6] (miss)

read array[7] (hit)

set 1 afterwards

(empty)

{array[2], array[3]}

{array[2], array[3]}

{array[6], array[7]}

{array[6], array[7]}

33

C and cache misses (warmup 4)

int array[8];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];

even_sum += array[2];

even_sum += arrayl[4];

even_sum += arrayl[6];

odd_sum += array[1];

odd_sum += array[3];

odd_sum += array[5];

odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2-set direct-mapped cache with
8B blocks?

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1)

(index 0)

Iarray [0]

array[l]larray[zj

array [3]Iarray [4]larray[5]

arra’ .-

memory access

set 0 afterwards

set 1 afterwards

— (empty) (empty)

read array[0] (miss) {array[0], array[1]} (empty)

read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]}

36

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0) (index 1)

(index 0)

larray [0]|array [1]larray [2]

array [3]larray [4]

array[5]

arra’ .-

memory access

set 0 afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

’read array[4] (miss)

|{array[4], array[5]}

’read array[1] (miss)

l{array[O], array[1]}

’read array[5] (miss)

|{array[4], array[5]}

36

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1) (index 0)

larray [0]

array[l]larray[zj

array [3]larray [4]larray[5]

arra’ .-

memory access

’read array[2] (miss)

’read array[6] (miss)

’read array[3] (miss)

’read array[7] (miss)

set 1 afterwards

(empty)

’{array[2], array[3]}

’{array[6], array[7]}

’{array[z], array[3]}

’{array[G], array[7]1}

36

arrays and cache misses (1)

int
int
for

}

array[1024]; // 4KB array
even_sum = 0, odd_sum = 0;

(int i = 0; i < 1024; i += 2) {
even_sum += array[i + 0];
odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do

anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

37

arrays and cache misses (2)

int array[1024]; // 4KB array

int even_sum = 0, odd_sum = 0;

for (int i = 0; 1 < 1024; i += 2)
even_sum += array[i + 0];

for (int 1 = 0; i < 1024; i += 2)
odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? Would a set-associtiave cache be better?

38

mapping of sets to memory (direct-mapped)

DM cache memory
set 0 —

set K —

39

mapping of sets to memory (direct-mapped)

DM cache memory
set 0 —

values which would be stored in same set
set K — (cache size) bytes apart

39

mapping of sets to memory (direct-mapped)

DM cache memory
set 0 —

set K —

<~ array[0] here

array[X] where
X = K -(array elements per cache block)

39

mapping of sets to memory (direct-mapped)

DM cache
set 0 —

set K —

memory

<~ array[0] here

array|[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

39

mapping of sets to memory (3-way)

3-way set assoc. cache memory
set 0 —

40

mapping of sets to memory (3-way)

3-way set assoc. cache memory
set 0 —

40

mapping of sets to memory (3-way)

3-way set assoc. cache memory
set 0 —

40

mapping of sets to memory (3-way)

3-way set assoc. cache memory

set 0 —

«—— array[0]

array[X] —

way size
where X =

array element size

accesses (way size) bytes apart in array?

beware conflict misses!

40

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, ..

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, ..

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ..

41

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —
set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, ..

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, ..

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ..

41

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, ..
block at 0: array[0] through array[3]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, ..
block at 16: array[4] through array|[7]

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ..
block at 2032: array[508] through array[511]

41

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, ..
block at 0: array[0] through array|3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, ..
block at 16: array[4] through array|[7]
block at 16+2KB: array[516] through array[519]

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ..

block at 2032: array[508] through array[511]
block at 2032-+2KB: array[1020] through array[1023]

41

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses

set 0: address 0, 0 + 2KB, 0 + 4KB, ..

set 1: address 16, 16 + 2KB, 16 + 4KB, ..

set 63: address 1008, 2032 + 2KB, 2032 + 4KB ..

42

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses

set 0: address 0, 0 + 2KB, 0 + 4KB, ..
block at 0: array[0] through array[3]

set 1: address 16, 16 + 2KB, 16 + 4KB, ..
address 16: array[4] through array[7]

set 63: address 1008, 2032 + 2KB, 2032 + 4KB ..
address 1008: array[252] through array[255]

42

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses

set 0: address 0, 0 + 2KB, 0 + 4KB, ..
block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]

set 1: address 16, 16 + 2KB, 16 + 4KB, ..
address 16: array[4] through array[7]

set 63: address 1008, 2032 + 2KB, 2032 + 4KB ..
address 1008: array[252] through array[255]

42

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses

set 0: address 0, 0 + 2KB, 0 + 4KB, ..
block at 0: array[0] through array|[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]

set 1: address 16, 16 + 2KB, 16 + 4KB, ..
address 16: array[4] through array[7]

set 63: address 1008, 2032 + 2KB, 2032 + 4KB ..
address 1008: array[252] through array[255]

42

C and cache misses (3)

typedef struct {
int a_value, b_value;
int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++1)
a_sum += dtems[i].a_value;
for (int i = 0; i < 8; ++1)
b_sum += 1dtems[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

43

C and cache misses (3, rewritten?)

item array[1024]; // 4 KB array

int a_sum = 0, b_sum = 0;

for (int 1 O; i < 1024; i += 128)
a_sum += arrayl[i];

for (int 1 1; i < 1024; i += 128)
b_sum += arrayl[i];

44

C and cache misses (4)

typedef struct {
int a_value, b_value;
int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++1)
a_sum += dtems[i].a_value;
for (int i = 0; i < 8; ++1)
b_sum += +dtems[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 4-way set associative 2KB
direct-mapped cache with 16B cache blocks?

45

	cache tradeoffs review
	cache tradeoff graphs

	misc cache optimizations: prefetching
	on split data/instruction caches and hierarchy
	AMAT review
	exercise: AMAT (simple case)
	exercise: multi-level cache AMAT

	varying parameters exercise
	misses in C, and intuition behind conflicts
	array misses warmup
	array misses and cache results

