introduction / layers of abstraction

lecture logistics
lectures via Zoom

there will be a recording

| will watch the chat
probably the best way to ask questions

also know if you click “raise hand”

introduction / layers of abstraction

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sxTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sxTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

why C?

almost a subset of C4++

notably removes classes, new/delete, iostreams
other changes, too, so C code often not valid C++ code

direct correspondence to assembly

why C?

almost a subset of C4++

notably removes classes, new/delete, iostreams
other changes, too, so C code often not valid C++ code

direct_correspondence to assembly

Should help you understand machinel!
Manual translation to assembly

why C?

almost a subset of C4++

notably removes classes, new/delete, iostreams
other changes, too, so C code often not valid C++ code

direct_correspondence to assembly

But “clever” (optimizing) compiler
might be confusingly indirect instead

homework: C environment

get Unix-like environment with a C compiler

will have department accounts, hopefully by end of week
portal.cs.virginia.edu or NX
instructions off course website (Collab)

some other options:
Linux (native or VM)
2150 VM image should work
some assignments can use OS X natively
some assignments can Windows Subsystem for Linux natively

assignment compatibility
supported platform: department machines

many use laptops

trouble? we'll say to use department machines

most assignments: C and Unix-like environment

also: tool written in Rust — but we'll provide binaries
previously written in D + needed D compiler

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sixTeEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

X86-64 assembly
in theory, you know this (CS 2150)

in reality, ..

10

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sixTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

11

Y86-6477

Y86: our textbook's X86-64 subset
hope: leverage 2150 assembly knowledge

much simpler than real X86-64 encoding
(which we will not cover)

not as simple as 2150's IBCM
variable-length encoding
more than one register
full conditional jumps
stack-manipulation instructions

12

layers of abstraction

X +=y “Higher-level” language: C
add %rbx, %rax Assembly: X86-64
60 03sixTEEN Machine code: Y86

Hardware Design Language: HCLRS

Gates / Transistors / Wires / Registers

13

textbook

Computer Systems: A Programmer’s Perspective
recommended — HCL assignments follow pretty closely

(useful, but less important for other topics)

14

processors and memory

processor

memory

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

processors and memory

bus
send address + send or get data

/

processor

memory

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

processors and memory

/0
Bridge

processor

memory

to 1/O devices
keyboard, mouse, wifi, ..

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

processors and memory

bus
send address + send or get data
(machine code/text/number...)

Bridge

processor

memory

to 1/O devices
keyboard, mouse, wifi, ..

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

processors and memory
CPU: send PC: Ox04000 .

MEM: send machine code: pushq %rbp
Bridge TR

processor

memory

to 1/O devices
keyboard, mouse, wifi, ..

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

processors and memory
CPU: send PC: Ox04000 .

MEM: send machine code: pushq %rbp

CPU: send Ox7fff830 (stack), ©x1234 (rbp)

processor .

memory

to 1/O devices
keyboard, mouse, wifi, ..

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

processors and memory
CPU: send PC: Ox04000 .

MEM: send machine code: pushq %rbp

CPU: send Ox7fff830 (stack), ©x1234 (rbp)
S T

processor (M EM: stored it
memory

to 1/O devices
keyboard, mouse, wifi, ..

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

processors and memory

processor

CPU: send PC: Ox04000

MEM: send machine co

CPU: send Ox7fff830 (stack), ©x1234 (rbp)

de: pushq %rbp

1 (M EM: stored it

CPU: next PC: Ox04001

to 1/O devices
keyboard, mouse, wifi, ..

Images:

Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons

SDRAM by Arnaud 25, via Wikimedia Commons

memory

15

processors and memory
CPU: send /O request address: Oxf122003

/O =
Bridge s

processor

1/O: send keystoke: “a"

to 1/O devices
keyboard, mouse, wifi, ..

Images:
Single core Opteron 8xx die: Dg2fer at the German language Wikipedia, via Wikimedia Commons
SDRAM by Arnaud 25, via Wikimedia Commons 15

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

16

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

17

program performance

naive model:
one instruction = one time unit

number of instructions matters, but ..

18

program performance: issues

parallelism

fast hardware is parallel
needs multiple things to do

caching

accessing things recently accessed is faster
need reuse of data/code

(more in other classes: algorithmic efficiency)

19

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

20

what compilers are/do
understanding weird compiler/linker rrors
if you want to make compilers

debugging applications

21

goals/other topics
understand how hardware works for...
program performance

what compilers are/do

weird program behaviors (segfaults, etc.)

22

weird program behaviors

what is a segmentation fault really?

how does the operating system interact with programs?

if you want to handle them — writing OSs

23

coursework

labs — grading: did you make reasonable progress?
collaboration permitted

homework assignments — introduced by lab (mostly)

due at 9:30am lab day
complete individually

weekly quizzes

final exam

24

coursework

labs — grading: did you make reasonable progress?
collaboration permitted

homework assignments — introduced by lab (mostly)

due at 9:30am lab day
complete individually

weekly quizzes

final exam

24

textbook

Computer Systems: A Programmer’s Perspective
recommended — HCL assignments follow pretty closely

(useful, but less important for other topics)

25

on lecture/lab/HW synchronization

labs/HWs not quite synchronized with lectures

main problem: want to cover material before you need it in
lab/HW

26

quizzes?
linked off course website (demo Thursday)

released Thursday evening, due Tuesday before first lecture
from lecture that week

sometimes also next week'’s readings
(for parts of course where we follow textbook closely)

two lowest quizzes dropped

27

late policy

exceptional circumstance? contact us.

otherwise, for homeworks only:
-10% O to 48 hours late
-15% 48 to 72 hours late
-100% otherwise

late quizzes, labs: no

we release answers
talk to us if illness, etc.

28

getting help tools
lab + OH: Discord (voice+text chat)

non-real-time help: Piazza (discussion forum)

29

on Discord

instructions on website

you could have a separate account from other uses of Discord

30

lab/office hours logistics (1)
labs+OH: held on Discord

public channels for you to chat (voice + text)

queue for TA help (DEMO)
shared between OH/lab

31

lab/office hours logistics (2)

TA help primarily via voice channels

private and public channels

indicate on queue if help needs to be public
also indicate if you can't do voice

also channels for student-led text+voice discussion
TAs might chime in
primary use: students helping each other
especially: find someone to talk to lab about

32

on the office hour queue
except for first three slots, queue is sorted by last time helped

we may reset those first three slots between office hours

goal 1: being on the queue overnight won't help you

goal 2: try to spread out the TA help

33

office hour calendar

office hours will be posted on calendar on the website

34

your TODO list

Discord account working

department account and/or C environment working
department accounts should happen by this weekend

before lab next week

35

grading
Quizzes: 30%
Homeworks: 40%
Labs: 15%

Final Exam: 15%

36

37

quiz demo

38

memory

address
OXFFFFFFFF
OXFFFFFFFE
OXFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
0x00000001
Ox00000000

value

Ox14

Ox45

OxDE

0x06

Ox05

Ox04

0x03

Ox02

Ox01

0x00

0x03

OXx60

OxFE

OXEO

OxAO

39

memory

address
OXFFFFFFFF
OXFFFFFFFE
OXFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
0x00000001
Ox00000000

value

Ox14

Ox45

OxDE

array of bytes (byte = 8 bits)
CPU interprets based on how accessed

0x06

Ox05

Ox04

0x03

Ox02

Ox01

0x00

0x03

OXx60

OxFE

OXEO

OxAO

39

memory

address
OXFFFFFFFF
OXFFFFFFFE
OXFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

Ox00000002
0x00000001
Ox00000000

value

Ox14

Ox45

OxDE

0x06

Ox05

Ox04

0x03

Ox02

Ox01

0x00

0x03

0x60

OXFE

OXEO

OxAO

address
Ox00000000
0x00000001
Ox00000002

OXO0041FFE
OXOO0041FFF
0x00042000
0x00042001
0x00042002
0x00042003
0x00042004
0x00042005
Ox00042006

OxFFFFFFFD
OxFFFFFFFE
OxFFFFFFFF

value

OxA0

OXEO

OXFE

OX60

0x03

0x00

Ox01

Ox02

0x03

Ox04

Ox05

0x06

OxDE

0Ox45

Ox14

39

endianness

address
OXFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

0x00000002
0x00000001
OxO000000060

value

Ox14

0x45

OxDE

Ox06

0x05

Ox04

0x03

Ox02

Ox01

0x00

0x03

0x60

OxFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

40

endianness

address
OXFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

0x00000002
0x00000001
OxO000000060

value

Ox14

0x45

OxDE

Ox06

0x05

Ox04

0x03

Ox02

Ox01

Ox00
Ox03

0x60

OxFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

40

endianness

address
OXFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

0x00000002
0x00000001
OxO000000060

value

Ox14

0x45

OxDE

Ox06

0x05

Ox04

0x03

Ox02

Ox01

Ox00
Ox03

0x60

OxFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

Ox03020100

0x00010203

50462976

66051

40

endianness

address
OXFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

0x00000002
0x00000001
OxO000000060

value

Ox14

0x45

OxDE

Ox06

0x05

Ox04

0x03

Ox02

Ox01

Ox00
Ox03

0x60

OxFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

0x03020100 =] 50462976

little endian
(least significant byte has lowest address)

Ox00010203 =] 66051

big endian
(most significant byte has lowest address)

40

endianness

address
OXFFFFFFFF
OxFFFFFFFE
OxFFFFFFFD

0x00042006
0x00042005
0x00042004
0x00042003
0x00042002
0x00042001
0x00042000
OXO0041FFF
OXO0041FFE

0x00000002
0x00000001
OxO000000060

value

Ox14

0x45

OxDE

Ox06

0x05

Ox04

0x03

Ox02

Ox01

Ox00
Ox03

0x60

OxFE

OXEO

OxAQ

int *x = (int*)0x42000;
printf("%d\n", *x);

0x03020100 =] 50462976

little endian
(least significant byte has lowest address)

Ox00010203 =] 66051

big endian
(most significant byte has lowest address)

40

exericse buffer

unsigned char buffer[8] = (T T T T 111]
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678;
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1];

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

41

exericse buffer

unsigned char buffer[8] = CT T T T T 111
{o,o0, /* ..., %/ 01}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678;
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1];

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

41

exericse buffer
0x12345678 Ox9ABCDEFO
unsigned char buffer[8] = (T T T T 111]
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678;
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuell[i];
buffer[i+4] = ptr_value2[i];

b

for (int i = 05 1
ptr_valuell[i]

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. O0x9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

< 4; ++i) { /* copy buffer[1..5] into valuel */
= buffer[i+1];

41

exericse buffer
0x12345678 Ox9ABCDEFO
unsigned char buffer[8] = [T 1 1 []
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678; valuel
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 0; i < 4; ++i) { /* copy buffer[1..5] into valuel */
ptr_valuel[i] = buffer[i+1];

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

exericse buffer
0x12345678 0x9ABCDEFO
unsigned char buffer[8] = [T 1 1 []
{o,0, /..., ¥/ 0}
/* uint32_t = 32-bit unsigned int */
uint32_t valuel = 0x12345678; valuel
uint32_t value2 = Ox9ABCDEFO;
unsigned char *ptr_valuel = (unsigned char *) &valuel;
unsigned char *ptr_value2 = (unsigned char *) &value2;
for (int i = 0; i < 4; ++i) { /* copy valuel/2 into buffer */
buffer[i] = ptr_valuelli];
buffer[i+4] = ptr_value2[i];

}

for (int i = 05 1
ptr_valuell[i]

}

What is valuel after this runs on a little-endian system?
A. OxOF654321 B. 0x123456F0 C. 0x3456789A
D. Ox345678F0 E. Ox9A123456 F. Ox9A785634
G. OxF0123456 H. 0xF2345678 |. something else

< 4; ++i) { /* copy buffer[1..5] into valuel */
= buffer[i+1];

backup slides

42

	Course Introduction
	layers of abstraction
	C
	assembly
	machine code
	what the processor does
	Goals (if you don't care about HW)

	Logistics
	Backup slides
	Memory and Endianness
	exercise

	backup slides

