
bit puzzles (finish) / ISAs + Y86
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Changelog
10 September: constructing masks: explicitly mention idea of
AND’ing

10 September: fully multibit: clarify what ! and !! does

12 September: fully multibit: …and correct typo of 6= 04 for = 0
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last time
bitshifts

logical (0s) and arithmatic (copy sign bit) right shfit
left shift
relationship to division, rounding

bitwise operations
array of gates, two bit input, one bit output
mask: set certain bits to 1/0

complement ~ — flip all bits
today: strategies for harder bit-puzzles, including

some tricks with two’s complement
using bitwise operations to do things in parallel

(…and then about ISAs)
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change to schedule
next week was going to be HCL1 (lab)/HCL 2 (HW)

would likely require rushing lecture somewhat

new assignment on linking + ISA tradeoffs in its place
new = I’m less sure about the amount of work being right
a lot more manual grading

not finalized yet, will be by Tuesday
(I’d like to have me + my TAs have a chance to review)
needed changes — originally planned for later

we’ll talk about ISAs+Y86 today + Tuesday
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bit-puzzles
assignments: bit manipulation puzzles

solve some problem with bitwise ops
maybe that you could do with normal arithmetic, comparisons, etc.

why?
good for thinking about HW design
good for understanding bitwise ops
unreasonably common interview question type
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simple operation performance
typical modern desktop processor:

bitwise and/or/xor, shift, add, subtract, compare — ∼ 1 cycle
integer multiply — ∼ 1-3 cycles
integer divide — ∼ 10-150 cycles

(smaller/simpler/lower-power processors are different)

add/subtract/compare are more complicated in hardware!

but much more important for typical applications
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note: ternary operator
w = (x ? y : z)

if (x) { w = y; } else { w = z; }
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ternary as bitwise: simplifying
(x ? y : z) if (x) return y; else return z;

task: turn into non-if/else/etc. operators
assembly: no jumps probably

strategy today: build a solution from simpler subproblems
(1) with x, y, z 1 bit: (x ? y : 0) and (x ? 0 : z)
(2) with x, y, z 1 bit: (x ? y : z)
(3) with x 1 bit: (x ? y : z)
(4) (x ? y : z)
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one-bit ternary
(x ? y : z)

constraint: x, y, and z are 0 or 1

now: reimplement in C without if/else/||/etc.
(assembly: no jumps probably)

divide-and-conquer:
(x ? y : 0)
(x ? 0 : z)
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one-bit ternary parts (1)
constraint: x, y, and z are 0 or 1

(x ? y : 0)

y=0 y=1
x=0 0 0
x=1 0 1

→ (x & y)
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one-bit ternary parts (2)
(x ? y : 0) = (x & y)

(x ? 0 : z)

opposite x: ~x

((~x) & z)
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one-bit ternary
constraint: x, y, and z are 0 or 1

(x ? y : z)

(x ? y : 0) | (x ? 0 : z)

(x & y) | ((~x) & z)
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multibit ternary
constraint: x is 0 or 1

old solution ((x & y) | (~x) & z) only gets least sig. bit

(x ? y : z)

(x ? y : 0) | (x ? 0 : z)

((−x) & y) | ((−(x ^ 1)) & z)
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constructing masks
constraint: x is 0 or 1

(x ? y : 0)

turn into y & MASK, where MASK = ???
“keep certain bits”

if x = 1: want 1111111111…1 (keep y)

if x = 0: want 0000000000…0 (want 0)

a trick: −x (-1 is 1111…1)

((-x) & y)
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constructing other masks
constraint: x is 0 or 1

(x ? 0 : z)

if x = ��SS1 0: want 1111111111…1

if x = ��AA0 1: want 0000000000…0

mask: ��HH-x

−(x^1)
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constructing other masks
constraint: x is 0 or 1

(x ? 0 : z)

if x = ��SS1 0: want 1111111111…1

if x = ��AA0 1: want 0000000000…0

mask: ��HH-x −(x^1)
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multibit ternary
constraint: x is 0 or 1

old solution ((x & y) | (~x) & z) only gets least sig. bit

(x ? y : z)

(x ? y : 0) | (x ? 0 : z)

((−x) & y) | ((−(x ^ 1)) & z)
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fully multibit
((((((((((((((hhhhhhhhhhhhhh
constraint: x is 0 or 1

(x ? y : z)

easy C way: !x = 1 (if x = 0) or 0, !(!x) = 0 or 1
x86 assembly: testq %rax, %rax then sete/setne
(copy from ZF)

(x ? y : 0) | (x ? 0 : z)

((−!!x) & y) | ((−!x) & z)
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problem: any-bit
is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: !(!(x))
another solution if you have − or + (bang in lab)

what if we don’t have ! or − or +

how do we solve is x is, say, four bits?

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))
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wasted work (1)

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

in general: (x & 1) | (y & 1) == (x | y) & 1
distributive property

(x | (x >> 1) | (x >> 2) | (x >> 3)) & 1
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wasted work (2)
4-bit any set: (x | (x >> 1)| (x >> 2) | (x >> 3)) & 1

performing 3 bitwise ors

…each bitwise or does 4 OR operations

but only result of one of the 4!

(x)
(x >> 1)

21



wasted work (2)
4-bit any set: (x | (x >> 1)| (x >> 2) | (x >> 3)) & 1

performing 3 bitwise ors

…each bitwise or does 4 OR operations

but only result of one of the 4!
(x)
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any-bit: looking at wasted work
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

x

x>>1

y=(x|x>>1)

final value wanted: x3|x2|x1|x0
previously:

compute x|(x>>1) for x1|x0;
(x>>2)|(x>>3) for x3|x2

observation: got both parts with just x|(x>>1)
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any-bit: divide and conquer
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

0 0 (0|x3) (x3|x2)

x3 (x3|x2) (x3|x2|x1) (x3|x2|x1|x0)

x

x>>1

y=(x>>1)|x

y>>2

y|(y>>2)
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any-bit: divide and conquer

four-bit input x = x3x2x1x0

x | (x >> 1) = (x3|0)(x2|x3)(x1|x2)(x0|x1) = y1y2y3y4

y | (y >> 2) = (y1|0)(y2|0)(y3|y1)(y4|y2) = z1z2z3z4

z4 = (y4|y2) = ((x2|x3)|(x0|x1)) = x0|x1|x2|x3 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

}

x3 x2 x1 x0

(x3|x2) (x1|x0)

(x3|x2|x1|x0)
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any-bit: divide and conquer
x7 x6 x5 x4 x3 x2 x1 x0

0 x7 x6 x5 x4 x3 x2 x1

(0|x7) (x7|x6) (x6|x5) (x5|x4) (x4|x3) (x3|x2) (x2|x1) (x1|x0)

0 0 (0|x7) (x7|x6) (x6|x5) (x5|x4) (x4|x3) (x3|x2)

(0|0|0|x7) (0|x7|x6|x5) (x6|x5|x4|x3) (x4|x3|x2|x1)
(0|0|x7|x6) (x7|x6|x5|x4) (x5|x4|x3|x2) (x3|x2|x1|x0)

x

x>>1

y=(x>>1)|x

y>>2

z=y|(y>>2)
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any-bit-set: 32 bits
unsigned int any(unsigned int x) {

x = (x >> 1) | x;
x = (x >> 2) | x;
x = (x >> 4) | x;
x = (x >> 8) | x;
x = (x >> 16) | x;
return x & 1;

}
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bitwise strategies
use paper, find subproblems, etc.

mask and shift
(x & 0xF0) >> 4

factor/distribute
(x & 1) | (y & 1) == (x | y) & 1

divide and conquer

common subexpression elimination
return ((−!!x) & y) | ((−!x) & z)
becomes
d = !x; return ((−!d) & y) | ((−d) & z)
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exercise
Which of these will swap last and second-to-last bit of an
unsigned int x? (bits uvwxyz become uvwxzy)
/* version A */

return ((x >> 1) & 1) | (x & (~1));

/* version B */
return ((x >> 1) & 1) | ((x << 1) & (~2)) | (x & (~3));

/* version C */
return (x & (~3)) | ((x & 1) << 1) | ((x >> 1) & 1);

/* version D */
return (((x & 1) << 1) | ((x & 3) >> 1)) ^ x;

28



version A
/* version A */

return ((x >> 1) & 1) | (x & (~1));
// ^^^^^^^^^^^^^^
// uvwxyz --> 0uvwxy -> 00000y

// ^^^^^^^^^^
// uvwxyz --> uvwxy0

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 00000y | uvwxy0 = uvwxyy
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version B
/* version B */

return ((x >> 1) & 1) | ((x << 1) & (~2)) | (x & (~3));
// ^^^^^^^^^^^^^^
// uvwxyz --> 0uvwxy --> 00000y

// ^^^^^^^^^^^^^^^
// uvwxyz --> vwxyz0 --> vwxy00

// ^^^^^^^^^
// uvwxyz --> uvwx00
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version C
/* version C */

return (x & (~3)) | ((x & 1) << 1) | ((x >> 1) & 1);
// ^^^^^^^^^^
// uvwxyz --> uvwx00

// ^^^^^^^^^^^^^^
// uvwxyz --> 00000z --> 0000z0

// ^^^^^^^^^^^^^
// uvwxyz --> 0uvwxy --> 00000y
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version D
/* version D */

return (((x & 1) << 1) | ((x & 3) >> 1)) ^ x;
// ^^^^^^^^^^^^^^^
// uvwxyz --> 00000z --> 0000z0

// ^^^^^^^^^^^^^^
// uvwxyz --> 0000yz --> 00000y

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 0000zy ^ uvwxyz --> uvwx(z XOR y)(y XOR z)
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expanded code
int lastBit = x & 1;
int secondToLastBit = x & 2;
int rest = x & ~3;
int lastBitInPlace = lastBit << 1;
int secondToLastBitInPlace = secondToLastBit >> 1;
return rest | lastBitInPlace | secondToLastBitInPlace;
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ISAs being manufactured today
(ISA = instruction set architecture)

x86 — dominant in desktops, servers

ARM — dominant in mobile devices

POWER — Wii U, IBM supercomputers and some servers

MIPS — common in consumer wifi access points

SPARC — some Oracle servers, Fujitsu supercomputers

z/Architecture — IBM mainframes

Z80 — TI calculators

SHARC — some digital signal processors

RISC V — some embedded

…
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microarchitecture v. instruction set
microarchitecture — design of the hardware

“generations” of Intel’s x86 chips
different microarchitectures for very low-power versus laptop/desktop
changes in performance/efficiency

instruction set — interface visible by software
what matters for software compatibility
many ways to implement (but some might be easier)
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exercise
which of the following changes to a processor are instruction set
changes?

A. increasing the number of registers available in assembly

B. decreasing the runtime of the add instruction

C. making the machine code for add instructions shorter

D. removing a multiply instruction

E. allowing the add instruction to have two memory operands
(instead of two register operands))
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instruction set architecture goals
exercise: what are some goals to have when designing an instruction
set?
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ISA variation
instruction set instr.

length
# normal
registers

approx.
# instrs.

x86-64 1–15 byte 16 1500
Y86-64 1–10 byte 15 18
ARMv7 4 byte* 16 400
POWER8 4 byte 32 1400
MIPS32 4 byte 31 200
Itanium 41 bits* 128 300
Z80 1–4 byte 7 40
VAX 1–14 byte 8 150
z/Architecture 2–6 byte 16 1000
RISC V 4 byte* 31 500*
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other choices: condition codes?
instead of:
cmpq %r11, %r12
je somewhere

could do:
/* _B_ranch if _EQ_ual */
beq %r11, %r12, somewhere
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other choices: addressing modes
ways of specifying operands. examples:

x86-64: 10(%r11,%r12,4)

ARM: %r11 << 3 (shift register value by constant)

VAX: ((%r11)) (register value is pointer to pointer)
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other choices: number of operands
add src1, src2, dest

ARM, POWER, MIPS, SPARC, …

add src2, src1=dest
x86, AVR, Z80, …

VAX: both
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CISC and RISC
RISC — Reduced Instruction Set Computer

reduced from what?

CISC — Complex Instruction Set Computer
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some VAX instructions

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

POLY x, coefficientsLen, coefficientsPtr
Evaluate the polynomial whose coefficients are pointed to by coefficientPtr at the
value x.

EDITPC sourceLen, sourcePtr, patternLen, patternPtr
Edit the string pointed to by sourcePtr using the pattern string specified by
patternPtr.
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microcode

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

loop in hardware???

typically: lookup sequence of microinstructions (“microcode”)

secret simpler instruction set
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Why RISC?
complex instructions were usually not faster

(even though programs with simple instructions were bigger)

complex instructions were harder to implement

compilers were replacing hand-written assembly
correct assumption: almost no one will write assembly anymore
incorrect assumption: okay to recompile frequently
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typical RISC ISA properties
fewer, simpler instructions

seperate instructions to access memory

fixed-length instructions

more registers

no “loops” within single instructions

no instructions with two memory operands

few addressing modes
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ISAs: who does the work?
CISC-like (harder to make hardware, easier to use assembly)

choose instructions with particular assembly language in mind?
hardware designer provides operations compiler wants

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
hardware designer exposes what it can do efficiently to compiler
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ISAs: who does the work?
CISC-like RISC-like
less work for assembly-writers more work for assembly-writers
more work for hardware less work for hardware

choose assembly, design instructions? design for particular kind of HW?
harder to build/test CPU easier to build/test CPU
design new instrs for target apps? spend more time optimizing HW?
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backup slides
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registers

PC

updates every clock cycle
register output
register input
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state in Y86-64

PC

Instr.
Mem.

register file
srcA

srcB

R[srcA]
R[srcB]

dstE

next R[dstE]

dstM

next R[dstM]

Data
Mem.

ZF/SF

Stat

logic
logic
(with
ALU)

l
o
g
i
c

to reg

l
o
g
i
c

to PC
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memories
Instr.
Mem. dataaddress

Data
Mem. data output

address

input
to write

write enable?
read enable?

address input
data output

time

address input
input to write

value in memory
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register file

register file
%rax, %rdx, …

reg valuesread reg #s

write reg #s

data to write

register number input
register value output

time

register number input
data input

value in register

write register #15: write is ignored
read register #15: value is always 0
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register file

register file
%rax, %rdx, …
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ALUs

ALU A OP B

A

B

operation select

Operations needed:
add — addq, addresses
sub — subq
xor — xorq
and — andq
more?
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instruction memory in HCL
built-in component

always present, with predefined wires

input wire (address): pc
64-bit value — address to read from

output wire (data): i10bytes
80-bits (size of largest instruction)
little-endian number

generally, can lookup these names on HCLRS README (course
website)
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other choices: instruction complexity
instructions that write multiple values?

x86-64: push, pop, movsb, …

more?
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