
caching — replacing / writing / tradeoffs

1



Changelog
20 October 2020: last time: more carefully distinguish addresses
and values that come from addresses

20 October 2020: write-allocate: update tag in example

20 October 2020: AMAT exercise: correct “not decrease” to “not
increase”

1



last time
direct-mapped caches

divide cache data, memory into fixed-sized blocks
each block of memory → single block of cache
store valid bits to remember if anything stored
store tags to remember which address data came from

divide addresses in tag/index/offset
offset: which byte of block to use

(each block starts with offset 0)
index: which set of cache is address mapped to
tag: rest of address

set-associative caches
multiple blocks per ‘set’
use tag to identify which block is where

2



Tag-Index-Offset exercise
m memory addreses bits (Y86-64: 64)
E number of blocks per set (“ways”)
S = 2s number of sets
s (set) index bits
B = 2b block size
b (block) offset bits
t = m − (s + b) tag bits
C = B × S × E cache size (excluding metadata)

My desktop:
L1 Data Cache: 32 KB, 8 blocks/set, 64 byte blocks
L2 Cache: 256 KB, 4 blocks/set, 64 byte blocks
L3 Cache: 8 MB, 16 blocks/set, 64 byte blocks
Divide the address 0x34567 into tag, index, offset for each cache.

3



T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)

block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

4



T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6

blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

4



T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

4



T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

4



T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

4



T-I-O exercise: L1
quantity value for L1
block size (given) B = 64Byte

B = 2b (b: block offset bits)
block offset bits b = 6
blocks/set (given) E = 8
cache size (given) C = 32KB = E × B × S

S = C

B × E
(S: number of sets)

number of sets S = 32KB
64Byte × 8 = 64

S = 2s (s: set index bits)
set index bits s = log2(64) = 6

4



T-I-O results
L1 L2 L3

sets 64 1024 8192
block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

5



T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

6



T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

6



T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L1:
bits 6-11 (L1 set): 01 0101 = 0x15
bits 12- (L1 tag): 0x34

6



T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L1:
bits 6-11 (L1 set): 01 0101 = 0x15
bits 12- (L1 tag): 0x34

6



T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L2:
bits 6-15 (set for L2): 01 0001 0101 = 0x115
bits 16-: 0x3

6



T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L2:
bits 6-15 (set for L2): 01 0001 0101 = 0x115
bits 16-: 0x3

6



T-I-O: splitting
L1 L2 L3

block offset bits 6 6 6
set index bits 6 10 13
tag bits (the rest)

0x34567: 3 4 5 6 7
0011 0100 0101 0110 0111

bits 0-5 (all offsets): 100111 = 0x27

L3:
bits 6-18 (set for L3): 0 1101 0001 0101 = 0xD15
bits 18-: 0x0

6



replacement policies

index valid tag value valid tag value LRU

0 1 000000
mem[0x00]
mem[0x01] 1 011000

mem[0x60]
mem[0x61] 1

1 1 011000
mem[0x62]
mem[0x63] 0 1

2-way set associative, 2 byte blocks, 2 sets

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss

how to decide where to insert 0x64?

track which block was read least recently
updated on every access

7



replacement policies

index valid tag value valid tag value LRU

0 1 000000
mem[0x00]
mem[0x01] 1 011000

mem[0x60]
mem[0x61] 1

1 1 011000
mem[0x62]
mem[0x63] 0 1

2-way set associative, 2 byte blocks, 2 sets

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss

how to decide where to insert 0x64?

track which block was read least recently
updated on every access

7



example replacement policies
least recently used

take advantage of temporal locality
at least dlog2(E!)e bits per set for E-way cache

(need to store order of all blocks)

approximations of least recently used
implementing least recently used is expensive — lots of bookkeeping
bits+time
really just need “avoid recently used” — much faster/simpler
good approximations: E to 2E bits

first-in, first-out
counter per set — where to replace next

(pseudo-)random
no extra information!
actually works pretty well in practice

8



cache miss types
compulsory (or cold) — first time accessing something

adding more sets or blocks/set wouldn’t change

conflict — sets aren’t big/flexible enough
a fully-associtive (1-set) cache of the same size would have done better

capacity — cache was not big enough

9



write-through v. write-back

CPU Cache

option 1: write-through

RAM
ABCD: FF …

11CD: 42
ABCD: FF

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

10



write-through v. write-back

CPU Cache

option 1: write-through

RAM
ABCD: 10 …

11CD: 42
ABCD: 10

…

write 10
to 0xABCD

1 write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

10



write-through v. write-back

CPU Cache

option 2: write-back

RAM
ABCD: 10

(dirty)
…

11CD: 42
ABCD: FF

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

10



write-through v. write-back

CPU Cache

option 2: write-back

RAM
ABCD: 10

(dirty)
…

11CD: 42
ABCD: 10

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

10



write-through v. write-back

CPU Cache RAM
ABCD: 10

(dirty)
…

11CD: 42
ABCD: 10

…

write 10
to 0xABCD

1

write 10
to 0xABCD

2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache

10



writeback policy

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, 4 byte blocks, 2 sets

changed value!

1 = dirty (different than memory)
needs to be written if evicted

11



allocate on write?
processor writes less than whole cache block

block not yet in cache

two options:

write-allocate
fetch rest of cache block, replace written part

write-no-allocate
send write through to memory
guess: not read soon?

12



write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001

13



write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block

13



write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block

13



write-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 000001

0xFF
mem[0x05] 1 0

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block
step 3a: read in new block – to get mem[0x05]
step 3b: update LRU information

13



write-no-allocate

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
step 1: is it in cache yet?
step 2: no, just send it to memory

14



exercise (1)

index valid tag value dirty valid tag value dirty LRU

0 1 001100
mem[0x30]
mem[0x31] 0 1 010000

mem[0x40]*
mem[0x41]* 1 0

1 1 011000
mem[0x62]
mem[0x63] 0 1 001100

mem[0x32]*
mem[0x33]* 1 1

2-way set associative, LRU, write-allocate, writeback

for each of the following accesses, performed alone, would it require
(a) reading a value from memory (or next level of cache) and (b)
writing a value to the memory (or next level of cache)?

writing 1 byte to 0x33
reading 1 byte from 0x52
reading 1 byte from 0x50

15



exercise (2)

index valid tag value valid tag value LRU

0 1 001100
mem[0x30]
mem[0x31] 1 010000

mem[0x40]
mem[0x41] 0

1 1 011000
mem[0x62]
mem[0x63] 1 001100

mem[0x32]
mem[0x33] 1

2-way set associative, LRU, write-no-allocate, write-through

for each of the following accesses, performed alone, would it require
(a) reading a value from memory and (b) writing a value to the
memory?

writing 1 byte to 0x33
reading 1 byte from 0x52
reading 1 byte from 0x50

16



fast writes

CPU Cache RAM

write 10
to 0xABCD

write 20
to 0x1234

0xABCD: 10
0x1234: 20

write buffer

write appears to complete immediately when placed in buffer
memory can be much slower

17



average memory access time
AMAT = hit time + miss penalty × miss rate

effective speed of memory

18



AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?

5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?

miss rate of 2/30 → approx 93% hit rate

19



AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?

miss rate of 2/30 → approx 93% hit rate

19



AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?
5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?
miss rate of 2/30 → approx 93% hit rate 19



backup slides

20



21



cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 22

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/


cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 22

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/


building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 1 01 AA BB
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 1 01 AA BB
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

23



building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 1 01 AA BB
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

23



cache operation (read)

valid tag data
1 10 00 11 22 33

1 11 B4 B5 B6 B7

100110b 10

index

=

tag

AND is hit? (1)

offset

data (B6)

24



cache operation (read)

valid tag data
1 10 00 11 22 33

1 11 B4 B5 B6 B7

100110b 10

index

=

tag

AND is hit? (1)

offset

data (B6)

24



cache operation (read)

valid tag data
1 10 00 11 22 33

1 11 B4 B5 B6 B7

100110b 10

index

=

tag

AND is hit? (1)

offset

data (B6)

24



adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1

way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1

way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 0

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



adding associativity

index valid tag value valid tag value

0 1 000000 mem[0x00]
mem[0x01] 1 011000 mem[0x60]

mem[0x61]

1 1 011000 mem[0x62]
mem[0x63] 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid conflict misses

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits

25



cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

26



cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

26



cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)

26



associative lookup possibilities
none of the blocks for the index are valid

none of the valid blocks for the index match the tag
something else is stored there

one of the blocks for the index is valid and matches the tag

27


	tag/index/offset exercise
	options for replacement
	miss types
	options for handling writes
	exercise: write/replacement policies
	fast writes: write buffers
	AMAT
	exercise: AMAT (simple case)

	backup slides
	benchmarking and cache results
	direct mapped caches
	associative caches


