Changelog

27 October 2020: correct quiz answer review slide to mark sets correctly

27 October 2020: counting misses: version 1: correct N^{2} to $N^{2} \div$ block size

29 October 2020: simple blocking - counting misses: correct off-by-factor-of-two error in misses for C

last time

cache tradeoffs in terms of
hit rate/miss rate
types of misses mitigated/helped
hit time
miss penalty
what accesses use the cache?
alignment - avoid crossing cache lines
counting cache misses from C code

quiz exercise solution

one cache block one cache block (set index 1) (set index 0)
one cache block (set index 1)
one cache block (set index 0)

memory access	set 0 afterwards	set 1 afterwards
-	(empty)	(empty)
read array[0] (miss)	\{array[0], array[1] \}	(empty)
read array[3] (miss)	\{array[0], array[1]\}	\{array[2], array[3] \}
read array[6] (miss)	\{array[0], array[1] \}	\{array[6], array[7]
read array[1] (hit)	\{array[0], array[1]	\{array[6], array[7]\}
read array[4] (miss)	\{array[4], array[5] \}	\{array[6], array[7]\}
read array[7] (hit)	\{array[4], array[5] \}	\{array[6], array[7]\}
read array[2] (miss)	\{array[4], array[5] \}	\{array[2], array[3] \}
read array[5] (hit)	\{array[4], array[5]	\{array[6], array[7]\}
read array[8] (miss)	$\{\operatorname{array}[8], \operatorname{array}[9]\}$	\{array[6], array[7]

quiz exercise solution

one cache block one cache block one cache block one cache block (set index 1$) \quad($ set index 0$) \quad($ set index 1$) \quad($ set index 0$)$

memory access	set $\mathbf{0}$ afterwards
-	(empty)
read array [0] (miss)	$\{\operatorname{array[0],~array[1]\} }$

read array [1] (hit)	$\{\operatorname{array[0],~array~[1]~\} }$
read array [4] (miss)	$\{\operatorname{array[4],\operatorname {array}[5]\} }$

$\operatorname{read} \operatorname{array[5]~(hit)~}$	$\{\operatorname{array[4],} \operatorname{array[5]\} }$
$\operatorname{read} \operatorname{array[8]~(miss)}$	$\{\operatorname{array[8],} \operatorname{array[9]\} }$

quiz exercise solution

one cache block one cache block one cache block one cache block (set index 1) (set index 0) (set index 1) (set index 0)

memory access
-

set $\mathbf{1}$ afterwards
(empty)

read array[3] (miss)
$\{\operatorname{array}[2], \operatorname{array}[3]\}$
$\{\operatorname{array}[6], \operatorname{array[7]\} }$

read array[7] (hit)
read array[2] (miss)

$\{\operatorname{array}[6], \operatorname{array}[7]\}$
$\{\operatorname{array}[2], \operatorname{array}[3]\}$

not the quiz problem

one cache block one cache block one cache bloc one cache block
$\ldots \overbrace{\operatorname{array}[0]} \operatorname{array[1]} \operatorname{array[2]} \operatorname{array[3]} \operatorname{array[4]} \operatorname{array[5]} \operatorname{array[6]} \operatorname{array[7]} \operatorname{arra} \cdot . .$.
if 1 -set 2 -way cache instead of 2 -set 1 -way cache:

memory access	single set with 2-ways, LRU first
-	---, ---
read array[0] (miss)	---, \{array[0], array[1]\}
read array[3] (miss)	$\{\operatorname{array[0],~array[1]\} ,~\{ array[2],~array[3]~}$
read array[6] (miss)	\{array[2], array[3]\}, \{array[6], array[7]\}
read array[1] (miss)	\{array[6], array[7]\}, \{array[0], array[1]\}
read array[4] (miss)	\{array[0], array[1]\}, \{array[3], array[4]\}
read array[7] (miss)	$\{\operatorname{array[3],} \operatorname{array[4]\} ,~\{ array[6],~array[7]\} }$
read array[2] (miss)	$\{\operatorname{array}[6], \operatorname{array}[7]\},\{\operatorname{array}[2], \operatorname{array}[3]\}$
read array[5] (miss)	\{array[2], array[3]\}, \{array[5], array[6]\}
read array[8] (miss)	\{array[5], array[6]\}, \{array[8], array[9]\}

approximate miss analysis

very tedious to precisely count cache misses
even more tedious when we take advanced cache optimizations into account
instead, approximations:
good or bad temporal/spatial locality good temporal locality: value stays in cache good spatial locality: use all parts of cache block
with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once (that is, once each time the inner loop is run) ...if they can all fit in the cache

approximate miss analysis

very tedious to precisely count cache misses
even more tedious when we take advanced cache optimizations into account
instead, approximations:
good or bad temporal/spatial locality good temporal locality: value stays in cache good spatial locality: use all parts of cache block
with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once (that is, once each time the inner loop is run) ...if they can all fit in the cache

locality exercise (1)

```
/* version 1 */
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 2 */
for (int j = 0; j < N; ++j)
    for (int i = 0; i < N; ++i)
        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

exercise: miss estimating (1)

for (int i = 0; i < N; ++i)

$$
\begin{aligned}
& \text { for (int } j=0 ; j<N ;++j) \\
& \\
& A[i]+=B[j] \star C[i \star N+j]
\end{aligned}
$$

Assume: 4 array elements per block, N very large, nothing in cache at beginning.

Example: $N / 4$ estimated misses for A accesses:
$\mathrm{A}[\mathrm{i}]$ should always be hit on all but first iteration of inner-most loop. first iter: $A[i]$ should be hit about $3 / 4$ s of the time (same block as $A[i-1]$ that often)

Exericse: estimate \# of misses for B, C

a note on matrix storage

$A-N \times N$ matrix
represent as array
makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat $=\operatorname{malloc}(N * N)$;
A_flat $[i * N+j]===A _2 d _a r r a y[i][j]$

convertion re: rows/columns

going to call the first index rows
$A_{i, j}$ is A row i, column j
rows are stored together
this is an arbitrary choice

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

if array starts on cache block first cache block $=$ first elements all together in one row!

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

second cache block:
1 from row 0
3 from row 1

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

5×5 array and 4 -element cache blocks

$\operatorname{array}[0 \star 5+0]$	$\operatorname{array}[0 \star 5+1]$	$\operatorname{array}[0 \star 5+2]$	$\operatorname{array}[0 \star 5+3]$	$\operatorname{array}[0 \star 5+4]$
$\operatorname{array}[1 \star 5+0]$	$\operatorname{array}[1 \star 5+1]$	$\operatorname{array}[1 \star 5+2]$	$\operatorname{array}[1 \star 5+3]$	$\operatorname{array}[1 \star 5+4]$
$\operatorname{array}[2 \star 5+0]$	$\operatorname{array}[2 \star 5+1]$	$\operatorname{array}[2 \star 5+2]$	$\operatorname{array}[2 \star 5+3]$	$\operatorname{array}[2 \star 5+4]$
$\operatorname{array}[3 \star 5+0]$	$\operatorname{array}[3 \star 5+1]$	$\operatorname{array}[3 \star 5+2]$	$\operatorname{array}[3 \star 5+3]$	$\operatorname{array}[3 \star 5+4]$
$\operatorname{array}[4 \star 5+0]$	$\operatorname{array}[4 \star 5+1]$	$\operatorname{array}[4 \star 5+2]$	$\operatorname{array}[4 \star 5+3]$	$\operatorname{array}[4 \star 5+4]$

generally: cache blocks contain data from 1 or 2 rows
\rightarrow better performance from reusing rows

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

```
/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
        C[i*N + j] += A[i*N + k] * B[k * N + j];
```


matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i $=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

loop orders and locality

loop body: $C_{i j}+=A_{i k} B_{k j}$
$k i j$ order: $C_{i j}, B_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $C_{i j}$ has temporal locality

loop orders and locality

loop body: $C_{i j}+=A_{i k} B_{k j}$
kij order: $C_{i j}, B_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $C_{i j}$ has temporal locality

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i $=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i $=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i $=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

which is better?

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
            C[i*N+j] += A[i * N + k] * B[k * N + j];
```

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i $=0 ; i<N ;++i)$
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C[i * N+j]+=A[i * N+k]$ * $B[k * N+j] ;$
exercise: Which version has better spatial/temporal locality for... ... accesses to C? ... accesses to A? ...accesses to B ?

array usage: $i j k$ order

array usage: $i j k$ order

array usage: $i j k$ order

array usage: $i j k$ order

$A_{x 0} \quad A_{x N}$
for all i :
for all j : for all k :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: row of A (elements used once) column of B (elements used once) single element of C (used many times)

array usage: $i j k$ order

looking only at two innermost loops together: some temporal locality in A (column reused) some temporal locality in B (row reused) some temporal locality in C (row reused)

array usage: kij order

for all k :
for all i : for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

if N large:
using $C_{i j}$ once per load into cache
(but using $C_{i, j+1}$ right after)
using $A_{i k}$ many times per load-into-cache using $B_{k j}$ once per load into cache (but using $B_{k, j+1}$ right after)

array usage: kij order

$A_{x 0} \quad A_{x N}$
for all k :
for all i : for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: spatial locality in B, C (use most of loaded B, C cache blocks) no useful spatial locality in A (rest of A's cache block wasted)

array usage: kij order

$$
C_{i 0} \text { to } C_{i N}
$$

for all k :
for all i : for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at innermost loop: temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

array usage: kij order

for all k :
for all i : for all j :
$C_{i j}+=A_{i k} \times B_{k j}$

looking only at innermost loop: processing one element of A (use many times) row of B (each element used once) column of C (each element used once)

array usage: kij order

for all k :
for all i :
for all j :

$$
C_{i j}+=A_{i k} \times B_{k j}
$$

looking only at two innermost loops together: good temporal locality in A (column reused) good temporal locality in B (row reused) bad temporal locality in C (nothing reused)

matrix multiply

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} \times B_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i $=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$

performance (with $A=B$)

alternate view 1: cycles/instruction

alternate view 2: cycles/operation

counting misses: version 1

```
for (int i \(=0 ; i<N ;++i)\)
    for (int \(j=0 ; j<N ;++j)\)
        for (int \(k=0 ; k<N ;++k)\)
            \(C[i * N+j]+=A[i * N+k] * B[k * N+j] ;\)
```

if N really large
assumption: can't get close to storing N values in cache at once
for A: about $N \div$ block size misses per k-loop total misses: $N^{3} \div$ block size
for B: about N misses per k-loop total misses: N^{3}
for C : about $1 \div$ block size miss per k -loop total misses: $N^{2} \div$ block size

counting misses: version 2

```
for (int \(k=0 ; k<N ;++k)\)
    for (int i \(=0 ; i<N ;++i)\)
        for (int \(j=0 ; j<N ;++j)\)
            \(C[i * N+j]+=A[i * N+k] * B[k * N+j] ;\)
```

for A : about 1 misses per j -loop total misses: N^{2}
for B: about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size
for C : about $N \div$ block size miss per j-loop total misses: $N^{3} \div$ block size

exercise: miss estimating (2)

```
for (int k = 0; k < 1000; k += 1)
    for (int i = 0; i < 1000; i += 1)
        for (int j = 0; j < 1000; j += 1)
        A[k*N+j] += B[i*N+j];
```

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1 K elements
estimate: approximately how many misses for A, B ?

locality exercise (2)

```
/* version 2 */
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        A[i] += B[j] * C[i * N + j]
/* version 3 */
for (int ii = 0; ii < N; ii += 32)
    for (int jj = 0; jj < N; jj += 32)
    for (int i = ii; i < ii + 32; ++i)
    for (int j = jj; j < jj + 32; ++j)
                        A[i] += B[j] * C[i * N + j];
```

exercise: which has better temporal locality in A ? in B ? in C ? how about spatial locality?

a transformation

for (int kk = 0; kk < N; kk += 2)
for (int $k=k k ; k<k k+2$; ++k)
for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{N}$; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
split the loop over k - should be exactly the same (assuming even N)

a transformation

for (int kk = 0; kk < N; kk += 2)
for (int $k=k k ; k<k k+2 ;++k)$
for (int i $=0 ; i<N ;++i)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$C[i * N+j]+=A[i * N+k]$ * $B[k * N+j] ;$
split the loop over k - should be exactly the same (assuming even N)

simple blocking

for (int kt = 0; bk < N; kt += 2)
/* was here: for (int $k=k k ; k<k k+2 ;++k$) */
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
/* load Aik, Aik+1 into cache and process: */
for (int $k=k k ; k<k k+2 ;++k$)
$C[i * N+j]+=A[i * N+k]$ * $B[k * N+j] ;$
now reorder split loop — same calculations

simple blocking

```
for (int kk = 0; kk < N; kk += 2)
    /* was here: for (int k = kk; k < kk + 2; ++k) */
        for (int i = 0; i < N; ++i)
        for (int j = 0; j < N; ++j)
        /* load Aik, Aik+1 into cache and process: */
        for (int k = kk; k < kk + 2; ++k)
        C[i*N+j] += A[i*N+k] * B[k*N+j];
```

now reorder split loop — same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int $k=k k ; k<k k+2 ;++k$) */ for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
/* load Aik, Aik+1 into cache and process: */ for (int $k=k k ; k<k k+2$; ++k)

$$
C[i * N+j]+=A[i * N+k] * B[k * N+j] ;
$$

now reorder split loop - same calculations
now handle $B_{i j}$ for $k+1$ right after $B_{i j}$ for k
(previously: $B_{i, j+1}$ for k right after $B_{i j}$ for k)

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```


simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```

Temporal locality in $C_{i j} \mathrm{~S}$

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```

More spatial locality in $A_{i k}$

simple blocking - expanded

```
for (int kk = 0; kk < N; kk += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block" of 2 k values: */
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
        }
    }
}
```

Still have good spatial locality in $B_{k j}, C_{i j}$

counting misses for $\mathbf{A}(1)$

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}[0 * \mathrm{~N}+1] \ldots$ (repeats N times) $\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)

counting misses for A (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right] \ldots$ $A\left[O^{*} N+2\right], A\left[O^{*} N+3\right], A\left[O^{*} N+2\right], A[0 * N+3] \ldots$

counting misses for A (1)

```
for (int kk = 0; kk < N; kk += 2)
    for (int i = 0; i < N; i += 1)
        for (int j = 0; j < N; ++j) {
            C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
            C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
    }
```

access pattern for A :
$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)
$\mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+0\right], \mathrm{A}\left[(\mathrm{N}-1)^{*} \mathrm{~N}+1\right] \ldots$ $A\left[O^{*} N+2\right], A\left[O^{*} N+3\right], A\left[O^{*} N+2\right], A[0 * N+3] \ldots$

counting misses for A (2)

$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1] \ldots$ (repeats N times) $\mathrm{A}\left[1^{*} \mathrm{~N}+0\right], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$ (repeats N times)

counting misses for \mathbf{A} (2)

$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1] \ldots$ (repeats N times)
$\mathrm{A}[1 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}[1 * \mathrm{~N}+1] \ldots$...repeats N times)
$A[(N-1) * N+0], A[(N-1) * N+1], A[(N-1) * N+0], A[(N-1) * N+1] \ldots$ $A\left[0^{*} N+2\right], A\left[0^{*} N+3\right], A\left[0^{*} N+2\right], A[0 * N+3] . .$.
likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one $\mathrm{A}[0 * \mathrm{~N}+0]$ and $\mathrm{A}[0 * \mathrm{~N}+1]$ usually in same cache block

counting misses for \mathbf{A} (2)

$\mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1], \mathrm{A}[0 * \mathrm{~N}+0], \mathrm{A}[0 * \mathrm{~N}+1] \ldots$ (repeats N times $)$
$\mathrm{A}[1 * \mathrm{~N}+0], \mathrm{A}\left[0^{*} \mathrm{~N}+1\right], \mathrm{A}\left[0^{*} \mathrm{~N}+0\right], \mathrm{A}\left[1^{*} \mathrm{~N}+1\right] \ldots$...repeats N times)
$A[(N-1) * N+0], A[(N-1) * N+1], A[(N-1) * N+0], A[(N-1) * N+1] \ldots$ $A\left[0^{*} N+2\right], A\left[0^{*} N+3\right], A\left[0^{*} N+2\right], A[0 * N+3] . .$.
likely cache misses: only first iterations of j loop
how many cache misses per iteration? usually one $\mathrm{A}[0 * \mathrm{~N}+0]$ and $\mathrm{A}[0 * \mathrm{~N}+1]$ usually in same cache block
about $\frac{N}{2} \cdot N$ misses total

counting misses for B (1)

for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1) for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$) \{ $C[i * N+j]+=A[i * N+k k+0]$ * $B[(k k+0) * N+j] ;$ $C[i * N+j]+=A[i * N+k k+1]$ * $B[(k k+1) * N+j] ;$ \}
access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B[2 * N+0], B[3 * N+0], \ldots B[2 * N+(N-1)], B\left[3^{*} N+(N-1)\right]$
$\mathrm{B}\left[4^{*} \mathrm{~N}+0\right], \mathrm{B}\left[5^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[4^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[5^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$

counting misses for B (2)

access pattern for B :
$\mathrm{B}[0 * \mathrm{~N}+0], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}[0 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}[2 * \mathrm{~N}+0], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}[2 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}[4 * \mathrm{~N}+0], \mathrm{B}\left[5^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[4^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[5^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$

counting misses for B (2)

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}[0 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}[2 * \mathrm{~N}+0], \mathrm{B}\left[3^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}[2 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$B[4 * N+0], B[5 * N+0], \ldots B[4 * N+(N-1)], B[5 * N+(N-1)]$
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
likely cache misses: any access, each time

counting misses for B (2)

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}[0 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}[2 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}[4 * \mathrm{~N}+0], \mathrm{B}[5 * \mathrm{~N}+0], \ldots \mathrm{B}[4 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}[5 * \mathrm{~N}+(\mathrm{N}-1)]$
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
likely cache misses: any access, each time
how many cache misses per iteration? equal to \# cache blocks in 2 rows

counting misses for B (2)

access pattern for B :
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}[0 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}\left[2^{*} \mathrm{~N}+0\right], \mathrm{B}[3 * \mathrm{~N}+0], \ldots \mathrm{B}[2 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}\left[3^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
$\mathrm{B}[4 * \mathrm{~N}+0], \mathrm{B}[5 * \mathrm{~N}+0], \ldots \mathrm{B}[4 * \mathrm{~N}+(\mathrm{N}-1)], \mathrm{B}[5 * \mathrm{~N}+(\mathrm{N}-1)]$
$\mathrm{B}\left[0^{*} \mathrm{~N}+0\right], \mathrm{B}\left[1^{*} \mathrm{~N}+0\right], \ldots \mathrm{B}\left[0^{*} \mathrm{~N}+(\mathrm{N}-1)\right], \mathrm{B}\left[1^{*} \mathrm{~N}+(\mathrm{N}-1)\right]$
likely cache misses: any access, each time
how many cache misses per iteration? equal to \# cache blocks in 2 rows
about $\frac{N}{2} \cdot N \cdot \frac{2 N}{\text { block size }}=N^{3} \div$ block size misses

simple blocking - counting misses

for (int $k k=0 ; k k<N ; k k+=2)$
for (int i = 0; i < N; i += 1)
for (int $j=0 ; j<N ;++j)$ \{
$C[i * N+j]+=A[i * N+k k+0] * B[(k k+0) * N+j] ;$ $C[i * N+j]+=A[i * N+k k+1] * B[(k k+1) * N+j] ;$ \}
N
$\frac{N}{2} \cdot N$ j-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 2$ total misses (before blocking: N^{2})
about $2 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before blocking)
about $N \div$ block size misses from C per j-loop iteration $N^{3} \div\left(2 \cdot\right.$ block size) total misses (before: $N^{3} \div$ block size)

simple blocking - counting misses

for (int $k k=0 ; k k<N ; k k+=2)$
for (int $i=0 ; i<N ; i+=1)$
for (int $j=0 ; j<N ;++j)$ \{
$C[i * N+j]+=A[i * N+k k+0] * B[(k k+0) * N+j] ;$ $C[i * N+j]+=A[i * N+k k+1] * B[(k k+1) * N+j] ;$ \}
N
$\frac{N}{2} \cdot N$ j-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 2$ total misses (before blocking: N^{2})
about $2 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before blocking)
about $N \div$ block size misses from C per j-loop iteration $N^{3} \div\left(2 \cdot\right.$ block size) total misses (before: $N^{3} \div$ block size)

improvement in read misses

simple blocking - with 3 ?

for (int $k k=0 ; k k<N ; k k+=3$)
for (int i $=0 ; i<N ; i+=1$)
for (int $j=0 ; j<N ;++j)$ \{
$C[i * N+j]+=A[i * N+k k+0] * B[(k k+0) * N+j] ;$
$C[i * N+j]+=A[i * N+k k+1] * B[(k k+1) * N+j] ;$ $C[i * N+j]+=A[i * N+k k+2]$ * $B[(k k+2) * N+j] ;$ \}
$\frac{N}{3} \cdot N$ j-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
about $3 N \div$ block size misses from C per j-loop iteration $N^{3} \div$ block size total misses (same as before)

simple blocking - with 3 ?

for (int $k k=0 ; k k<N ; k k+=3$)
for (int i $=0$; i $<N$; i += 1)
for (int $j=0 ; j<N ;++j)$ \{
$C[i * N+j]+=A[i * N+k k+0] * B[(k k+0) * N+j] ;$
$C[i * N+j]+=A[i * N+k k+1] * B[(k k+1) * N+j] ;$ $C[i \star N+j]+=A[i \star N+k k+2]$ * $B[(k k+2) * N+j] ;$ \}
$\frac{N}{3} \cdot N$ j-loop iterations, and (assuming N large):
about 1 misses from A per j-loop iteration
$N^{2} / 3$ total misses (before blocking: N^{2})
about $3 N \div$ block size misses from B per j-loop iteration $N^{3} \div$ block size total misses (same as before)
about $3 N \div$ block size misses from C per j-loop iteration $N^{3} \div$ block size total misses (same as before)

more than 3 ?

can we just keep doing this increase from 3 to some large X ? ... assumption: X values from A would stay in cache X too large - cache not big enough
assumption: X blocks from B would help with spatial locality
X too large - evicted from cache before next iteration

array usage (2k at a time)

- $C_{i j}$
for each kk:
for each i:
for each j :
for $k=k k, k k+1$:

$$
C_{i j}+=A_{i k} \cdot B_{k j}
$$

array usage (2k at a time)

for each kk: for each i:
for each j :
for $k=k k, k k+1$:
$C_{i j}+=A_{i k} \cdot B_{k j}$
within innermost loop good spatial locality in A bad locality in B good temporal locality in C

array usage (2k at a time)

for each kk: for each i:
for each j :
for $k=k k, k k+1$: $C_{i j}+=A_{i k} \cdot B_{k j}$
loop over j : better spatial locality over A than before; still good temporal locality for A

array usage (2k at a time)

for each kk: for each i:
for each j :

$$
\text { for } k=k k, k k+1 \text { : }
$$

$$
C_{i j}+=A_{i k} \cdot B_{k j}
$$

loop over j : spatial locality over B is worse but probably not more misses cache needs to keep two cache blocks for next iter instead of one (probably has the space left over!)

array usage (2k at a time)

for each kk: for each i:
for each j :
for $k=k k, k k+1$: have more than 4 cache blocks? $C_{i j}+=A_{i k}$. increasing $k k$ increment would use more of them
right now: only really care about keeping 4 cache blocks in j loop

simple blocking (2)

same thing for i in addition to k ?
for (int kt = 0; kt < N ; kt += 2) \{
for (int ii $=0$; ii < N; ii += 2) \{
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$) \{
/* process a "block": */
for (int $k=k k ; k<k k+2$; ++k)
for (int i = 0; i < ii + 2; ++i)
$C[i * N+j]+=A[i * N+k] * B[k * N+j] ;$
\}
\}
\}

simple blocking - locality

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j< N; ++j) {
            /* process a "block": */
            Ci+0,j += A A i+0,k+0}** B <k+0,
            C i+0,j}+=\mp@subsup{A}{i+0,k+1}{}*\mp@subsup{B}{k+1,j}{
            Ci+1,j += A A i+1,k+0}** B <k+0,
            C i+1,j += A Ai+1,k+1 * B
        }
    }
}
```


simple blocking - locality

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        /* load a block around Aik */
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            Ci+0,j}+=\mp@subsup{A}{i+0,k+0}{*}\mp@subsup{B}{k+0,j}{
            C i+0,j}+=\mp@subsup{A}{i+0,k+1}{}*\mp@subsup{B}{k+1,j}{
                C
                C
        }
    }
}
```

now: more temporal locality in B
previously: access $B_{k j}$, then don't use it again for a long time

simple blocking - counting misses for A

for (int k = 0; k < N ; k += 2)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N ; ++j) \{
$C_{i+0, j}+=A_{i+0, k+0} * B_{k+0, j}$
$C_{i+0, j}+=A_{i+0, k+1} * B_{k+1, j}$
$C_{i+1, j}+=A_{i+1, k+0} * B_{k+0, j}$
$C_{i+1, j}+=A_{i+1, k+1} * B_{k+1, j}$ \}
$\frac{N}{2} \cdot \frac{N}{2}$ iterations of j loop
likely 2 misses per loop with A (2 cache blocks)
total misses: $\frac{N^{2}}{2}$ (same as only blocking in K)

simple blocking - counting misses for B

for (int k = 0; k < N ; k += 2)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N ; ++j) \{
$C_{i+0, j}+=A_{i+0, k+0} * B_{k+0, j}$
$C_{i+0, j}+=A_{i+0, k+1} * B_{k+1, j}$
$C_{i+1, j}+=A_{i+1, k+0} * B_{k+0, j}$
$C_{i+1, j}+=A_{i+1, k+1} * B_{k+1, j}$ \}
$\frac{N}{2} \cdot \frac{N}{2}$ iterations of j loop
likely $2 \div$ block size misses per iteration with B
total misses: $\frac{N^{3}}{2 \cdot \text { block size }}$ (before: $\frac{N^{3}}{\text { block size }}$)

simple blocking - counting misses for C

for (int k = 0; k < N ; k += 2)
for (int i = 0; i < N; i += 2)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$) \{
$C_{i+0, j}+=A_{i+0, k+0} * B_{k+0, j}$
$C_{i+0, j}+=A_{i+0, k+1} * B_{k+1, j}$
$C_{i+1, j}+=A_{i+1, k+0}$ * $B_{k+0, j}$
$C_{i+1, j}+=A_{i+1, k+1} * B_{k+1, j}$
\}
$\frac{N}{2} \cdot \frac{N}{2}$ iterations of j loop
likely $\frac{2}{\text { block size }}$ misses per iteration with C
total misses: $\frac{N^{3}}{2 \cdot \text { block size }}$ (same as blocking only in K)

simple blocking - counting misses (total)

for (int k = 0; k < N ; k += 2)
for (int $i=0 ; i<N ; i+=2)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j})$ \{
$C_{i+0, j}+=A_{i+0, k+0} * B_{k+0, j}$
$C_{i+0, j}+=A_{i+0, k+1} * B_{k+1, j}$
$C_{i+1, j}+=A_{i+1, k+0} * B_{k+0, j}$
$C_{i+1, j}+=A_{i+1, k+1} * B_{k+1, j}$
\}
before:
A: $\frac{N^{2}}{2} ; \mathrm{B}: \frac{N^{3}}{1 \cdot \text { block size }} ; \mathrm{C} \frac{N^{3}}{1 \cdot \text { block size }}$
after:
A: $\frac{N^{2}}{2} ; \mathrm{B}: \frac{N^{3}}{2 \cdot \text { block size }} ; \mathrm{C} \frac{N^{3}}{2 \cdot \text { block size }}$

generalizing: divide and conquer

```
partial_matrixmultiply(float *A, float *B, float *C
```

 int startI, int end, ...) \{
 for (int i = startI; i < end; ++i) \{
 for (int j = startJ; j < end; ++j) \{
 for (int \(k=s t a r t k ; k<e n d K ; ~++k) ~\{\)
 \}
matrix_multiply(float *A, float *B, float *C, int N) \{
for (int ii = 0; ii < N; ii += BLOCK_I)
for (int $\mathrm{jj}=0 ; \mathrm{jj}<\mathrm{N}$; $\mathrm{jj}+=$ BLOCK_J)
for (int kt $=0 ; \mathrm{kk}<\mathrm{N} ; \mathrm{kk}+=$ BLOCK_K)
/* do everything for segment of A, B, C
that fits in cache! */
partial_matmul(A, B, C,
ii, ii + BLOCK_I, jj, jj + BLOCK_J,
kt, kn + BLOCK_K)

array usage: matrix blocl $_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
inner loops work on "matrix block" of A, B, C rather than rows of some, little blocks of others blocks fit into cache (b/c we choose I, K, J) where previous rows might not

array usage: matrix blocl $_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
now (versus loop ordering example) some spatial locality in A, B, and C some temporal locality in A, B, and C

array usage: matrix blocl $_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ calculation uses strips from A, B K calculations for one cache miss good temporal locality!

array usage: matrix blocl $_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$A_{i k}$ used with entire strip of $B J$ calculations for one cache miss good temporal locality!

array usage: matrix blocl $_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}} \cdot \mathrm{B}_{\mathrm{kj}}$

$C_{i j}$ block
$(I \times J)$
(approx.) $K I J$ fully cached calculations
for $K I+I J+K J$ loads
(assuming everything stays in cache)

cache blocking efficiency

for each of $N^{3} / I J K$ matrix blocks:
load $I \times K$ elements of $A_{i k}$:
$\approx I K \div$ block size misses per matrix block
$\approx N^{3} /(J \cdot$ blocksize $)$ misses total
load $K \times J$ elements of $A_{k j}$:
$\approx N^{3} /(I \cdot$ blocksize $)$ misses total
load $I \times J$ elements of $B_{i j}$:
$\approx N^{3} /(K \cdot$ blocksize $)$ misses total
bigger blocks - more work per load!
catch: $I K+K J+I J$ elements must fit in cache otherwise estimates above don't work

cache blocking rule of thumb

fill the most of the cache with useful data
and do as much work as possible from that
example: my desktop 32 KB L1 cache
$I=J=K=48$ uses $48^{2} \times 3$ elements, or 27 KB .
assumption: conflict misses aren't important

systematic approach

```
for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; ++i) {
        Aik loaded once in this loop:
        for (int j = 0; j < N; ++j)
        Cij},\mp@subsup{B}{kj}{}\mathrm{ loaded each iteration (if N big):
        B[i*N+j] += A[i*N+k] * A[k*N+j];
```

values from $A_{i k}$ used N times per load
values from $B_{k j}$ used 1 times per load but good spatial locality, so cache block of $B_{k j}$ together
values from $C_{i j}$ used 1 times per load but good spatial locality, so cache block of $C_{i j}$ together

exercise: miss estimating (3)

```
for (int kk = 0; kk < 1000; kk += 10)
    for (int jj = 0; jj < 1000; jj += 10)
        for (int i = 0; i < 1000; i += 1)
        for (int j = jj; j < jj+10; j += 1)
        for (int k = kk; k < kk + 10; k += 1)
        A[k*N+j] += B[i*N+j];
```

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1 K elements, but big enough to hold 500 or so
estimate: approximately how many misses for A, B ?
hint 1: part of A, B loaded in two inner-most loops only needs to be loaded once

loop ordering compromises

loop ordering forces compromises:
for k : for i : for $j: c[i, j]+=a[i, k] * b[j, k]$
perfect temporal locality in a[i,k]
bad temporal locality for $c[i, j], b[j, k]$
perfect spatial locality in $c[i, j]$
bad spatial locality in $b[j, k], a[i, k]$

loop ordering compromises

loop ordering forces compromises:
for k : for i : for $j: c[i, j]+=a[i, k] * b[j, k]$
perfect temporal locality in a[i,k]
bad temporal locality for $c[i, j], b[j, k]$
perfect spatial locality in $c[i, j]$
bad spatial locality in $b[j, k], a[i, k]$
cache blocking: work on blocks rather than rows/columns have some temporal, spatial locality in everything

cache blocking pattern

no perfect loop order? work on rectangular matrix blocks
size amount used in inner loops based on cache size
in practice:
test performance to determine 'size' of blocks

backup slides

mapping of sets to memory (direct-mapped)

memory

mapping of sets to memory (direct-mapped)

memory

mapping of sets to memory (direct-mapped)

memory
 $\mathrm{X}=\mathrm{K} \cdot($ array elements per cache block)

mapping of sets to memory (direct-mapped)

memory

mapping of sets to memory (3-way)

C and cache misses (4)

```
typedef struct {
    int a_value, b_value;
    int other_values[6];
} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

C and cache misses (4, rewrite)

int array[40]
int a_sum = 0, b_sum = 0;
for (int i $=0$; i < 40; i += 8)
a_sum += array[i];
for (int i = 1; i < 40; i += 8) b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do anything funny) and array starts at beginning of cache block.

How many data cache misses on a 2-way set associative 128B cache with 16B cache blocks and LRU replacement?

C and cache misses $(4$, solution pt 1$)$

ints 4 byte \rightarrow array[0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way 4 sets total
accessing $0,8,16,24,32,1,9,17,25,33$

C and cache misses (4, solution pt 1)

ints 4 byte \rightarrow array [0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way 4 sets total
accessing $0,8,16,24,32,1,9,17,25,33$
$0($ set 0$), 8(\operatorname{set} 2), 16(\operatorname{set} 0), 24(\operatorname{set} 2), 32(\operatorname{set} 0)$
$1($ set 0$), 9(\operatorname{set} 2), 17(\operatorname{set} 0), 25(\operatorname{set} 2), 33(\operatorname{set} 0)$

C and cache misses (4, solution pt 2)

 access set 0 after (LRU first) resultarray[0] 一, array[0 to 3]
array[16] array[0 to 3], array[16 to 19] array[32] array[16 to 19], array[32 to 35] $\operatorname{array[1]~array[32~to~35],~array[0~to~3]~}$ array[17] array[0 to 3], array[16 to 19] miss array[32] array[16 to 19], array[32 to 35] miss
miss miss miss miss

6 misses for set 0

C and cache misses (4, solution pt 3)

access set 2 after (LRU first) result
$\operatorname{array}[8]$ —, array[8 to 11] array[24] array[8 to 11], array[24 to 27]
miss
miss
2 misses for set 1 array[9] array[8 to 11], array[24 to 27] hit array[25] array[16 to 19], array[32 to 35] hit

arrays and cache misses (1)

```
int array[1024]; // 4KB array
```

int even_sum $=0$, odd_sum $=0$;
for (int $i=0 ; i<1024 ; i+=2)$ \{
even_sum += array[i + 0];
odd_sum += array[i + 1];
\}
Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?

arrays and cache misses (2)

int array[1024]; // 4KB array
int even_sum $=0$, odd_sum $=0$;
for (int i $=0 ; i<1024 ; i+=2$)
even_sum += array[i + 0];
for (int i $=0 ; i<1024 ; i+=2$) odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks? Would a set-associtiave cache be better?

C and cache misses (3)

```
typedef struct {
    int a_value, b_value;
    int other_values[10];
} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)
    a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)
    b_sum += items[i].b_value;
```

observation: 12 ints in struct: only first two used equivalent to accessing array[0], array[12], array[24], etc. ...then accessing array[1], array[13], array[25], etc.

C and cache misses (3, rewritten?)

```
int array[60];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 60; i += 12)
    a_sum += array[i];
for (int i = 1; i < 60; i += 12)
    b_sum += array[i];
```

Assume everything but array is kept in registers (and the compiler does not do anything funny) and array at beginning of cache block.

How many data cache misses on a 128B two-way set associative cache with 16B cache blocks and LRU replacement? observation 1: first loop has 5 misses - first accesses to blocks observation 2: array[0] and array[1], array[12] and array[13], etc. in same cache block

C and cache misses (3, solution)

ints 4 byte \rightarrow array[0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array [0 to 3]
set 5 contains block with array[20 to 23]
etc.

C and cache misses (3, solution)

ints 4 byte \rightarrow array[0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array [0 to 3]
set 5 contains block with array[20 to 23]
etc.

C and cache misses (3, solution)

ints 4 byte \rightarrow array [0 to 3] and array[16 to 19] in same cache set $64 \mathrm{~B}=16$ ints stored per way
4 sets total
accessing array indices $0,12,24,36,48,1,13,25,37,49$
0 (set 0 , array[0 to 3$]$), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice no replacement needed
so access to $1,21,41,61,81$ all hits:
set 0 contains block with array [0 to 3]
set 5 contains block with array[20 to 23]
etc.

C and cache misses (3)

```
typedef struct {
    int a_value, b_value;
    int boring_values[126];
} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)
        a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)
    b_sum += items[i].b_value;
```

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 2 KB direct-mapped cache with 16B cache blocks?

C and cache misses (3, rewritten?)

item array[1024]; // 4 KB array
int a_sum $=0, b_{-}$sum $=0 ;$
for (int i $=0$; i < 1024; i += 128)
a_sum += array[i];
for (int i = 1; i < 1024; i += 128) b_sum += array[i];

C and cache misses (4)

typedef struct \{ int a_value, b_value; int boring_values[126];
\} item;
item items[8]; // 4 KB array
int a_sum $=0, b_{-}$sum $=0$;
for (int i $=0$; i < 8; ++i)

```
        a_sum += items[i].a_value;
```

for (int i $=0$; i < 8; ++i) b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do anything funny).

How many data cache misses on a 4-way set associative 2 KB direct-mapped cache with 16B cache blocks?

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ...

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3]
set 1 : address 16 to 31 , $(16$ to 31$)+2 \mathrm{~KB},(16$ to 31$)+4 \mathrm{~KB}, \ldots$ block at 16: array[4] through array[7]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511]

thinking about cache storage (1)

2KB direct-mapped cache with 16B blocks -
set 0 : address 0 to $15,(0$ to 15$)+2 \mathrm{~KB},(0$ to 15$)+4 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3]
block at $0+2 \mathrm{~KB}$: array [512] through array [515]
set 1: address 16 to 31 , $(16$ to 31$)+2 K B,(16$ to 31$)+4 K B, \ldots$ block at 16: array[4] through array[7] block at $16+2 \mathrm{~KB}$: array[516] through array[519]
set 127: address 2032 to 2047, (2032 to 2047) + 2KB, ... block at 2032: array[508] through array[511] block at $2032+2 \mathrm{~KB}$: array[1020] through array[1023]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 K B, 0+4 K B, \ldots$
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$.

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$ block at 0: array[0] through array[3]
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$. address 1008: array[252] through array[255]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3]
block at $0+1 \mathrm{~KB}$: array[256] through array[259] block at $0+2 \mathrm{~KB}$: array[512] through array[515]
set 1 : address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$. address 1008: array[252] through array[255]

thinking about cache storage (2)

2KB 2-way set associative cache with 16B blocks: block addresses
set 0 : address $0,0+2 \mathrm{~KB}, 0+4 \mathrm{~KB}, \ldots$
block at 0: array[0] through array[3]
block at $0+1 \mathrm{~KB}$: array [256] through array[259] block at $0+2 \mathrm{~KB}$: array[512] through array[515]
set 1: address $16,16+2 \mathrm{~KB}, 16+4 \mathrm{~KB}, \ldots$ address 16: array[4] through array[7]
set 63: address 1008, $2032+2 \mathrm{~KB}, 2032+4 \mathrm{~KB} .$. address 1008: array[252] through array[255]

$L 1$ misses (with $A=B$)

L1 miss detail (1)

L1 miss detail (2)

read misses/1K instruction

addresses

$B[k \star 114+j]$	is at	10	0000	0000	0100
$B[k \star 114+j+1]$	is at	10	0000	0000	1000
$B[(k+1) \star 114+j]$	is at	10	0011	1001	0100
$B[(k+2) \star 114+j]$	is at	10	0101	0101	1100
\cdots					
$B[(k+9) \star 114+j]$	is at	11	0000	0000	1100

addresses

$B[k \star 114+j]$	is at	10	0000	0000	0100
$B[k \star 114+j+1]$	is at	10	0000	0000	1000
$B[(k+1) \star 114+j]$	is at	10	0011	1001	0100
$B[(k+2) \star 114+j]$	is at	10	0101	0101	1100
\cdots					
$B[(k+9) \star 114+j]$	is at	11	0000	0000	1100

test system L1 cache: 6 index bits, 6 block offset bits

conflict misses

powers of two - lower order bits unchanged
$B[k * 93+j]$ and $B[(k+11) * 93+j]:$
1023 elements apart (4092 bytes; 63.9 cache blocks)
64 sets in L1 cache: usually maps to same set
$\mathrm{B}[\mathrm{k} \star 93+(j+1)]$ will not be cached (next i loop)
even if in same block as $B[k \star 93+j]$
how to fix? improve spatial locality
(maybe even if it requires copying)

array usage: $i j k$ order

$A_{x 0} \quad A_{x N}$
for all i :
for all j : for all k :
$C_{i j}+=A_{i k} \times B_{k j}$
looking only at two innermost loops together: good spatial locality in A poor spatial locality in B good spatial locality in C

array usage: kij order

keeping values in cache

can't explicitly ensure values are kept in cache
...but reusing values effectively does this
cache will try to keep recently used values
cache optimization ideas: choose what's in the cache for thinking about it: load values explicitly for implementing it: access only values we want loaded

