
1

Changelog
27 October 2020: correct quiz answer review slide to mark sets
correctly

27 October 2020: counting misses: version 1: correct N2 to
N2 ÷ block size

29 October 2020: simple blocking — counting misses: correct
off-by-factor-of-two error in misses for C

1

last time
cache tradeoffs in terms of

hit rate/miss rate
types of misses mitigated/helped
hit time
miss penalty

what accesses use the cache?

alignment — avoid crossing cache lines

counting cache misses from C code

2

quiz exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block
(set index 0)

one cache block
(set index 1)

one cache block
(set index 0)

one cache block
(set index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[6] (miss) {array[0], array[1]} {array[6], array[7]}
read array[1] (hit) {array[0], array[1]} {array[6], array[7]}
read array[4] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}
read array[2] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[6], array[7]}
read array[8] (miss) {array[8], array[9]} {array[6], array[7]}

4

quiz exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block
(set index 0)

one cache block
(set index 1)

one cache block
(set index 0)

one cache block
(set index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[6] (miss) {array[0], array[1]} {array[6], array[7]}
read array[1] (hit) {array[0], array[1]} {array[6], array[7]}
read array[4] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}
read array[2] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[6], array[7]}
read array[8] (miss) {array[8], array[9]} {array[6], array[7]}

4

quiz exercise solution

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block
(set index 0)

one cache block
(set index 1)

one cache block
(set index 0)

one cache block
(set index 1)

memory access set 0 afterwards set 1 afterwards
— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[6] (miss) {array[0], array[1]} {array[6], array[7]}
read array[1] (hit) {array[0], array[1]} {array[6], array[7]}
read array[4] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}
read array[2] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[6], array[7]}
read array[8] (miss) {array[8], array[9]} {array[6], array[7]}

4

not the quiz problem

… …array[0]array[1]array[2]array[3]array[4]array[5]array[6]array[7]array[8]

one cache block one cache bloc one cache blockone cache block

memory access single set with 2-ways, LRU first
— ---, ---
read array[0] (miss) ---, {array[0], array[1]}
read array[3] (miss) {array[0], array[1]}, {array[2], array[3]}
read array[6] (miss) {array[2], array[3]}, {array[6], array[7]}
read array[1] (miss) {array[6], array[7]}, {array[0], array[1]}
read array[4] (miss) {array[0], array[1]}, {array[3], array[4]}
read array[7] (miss) {array[3], array[4]}, {array[6], array[7]}
read array[2] (miss) {array[6], array[7]}, {array[2], array[3]}
read array[5] (miss) {array[2], array[3]}, {array[5], array[6]}
read array[8] (miss) {array[5], array[6]}, {array[8], array[9]}

if 1-set 2-way cache instead of 2-set 1-way cache:

6

approximate miss analysis
very tedious to precisely count cache misses

even more tedious when we take advanced cache optimizations into
account

instead, approximations:

good or bad temporal/spatial locality
good temporal locality: value stays in cache
good spatial locality: use all parts of cache block

with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once
(that is, once each time the inner loop is run)
…if they can all fit in the cache

7

approximate miss analysis
very tedious to precisely count cache misses

even more tedious when we take advanced cache optimizations into
account

instead, approximations:

good or bad temporal/spatial locality
good temporal locality: value stays in cache
good spatial locality: use all parts of cache block

with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once
(that is, once each time the inner loop is run)
…if they can all fit in the cache

7

locality exercise (1)
/* version 1 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 2 */
for (int j = 0; j < N; ++j)

for (int i = 0; i < N; ++i)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?

8

exercise: miss estimating (1)
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

Assume: 4 array elements per block, N very large, nothing in cache
at beginning.

Example: N/4 estimated misses for A accesses:
A[i] should always be hit on all but first iteration of inner-most loop.
first iter: A[i] should be hit about 3/4s of the time (same block as A[i-1]
that often)

Exericse: estimate # of misses for B, C

9

a note on matrix storage
A — N × N matrix

represent as array

makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat = malloc(N * N);

A_flat[i * N + j] === A_2d_array[i][j]

10

convertion re: rows/columns
going to call the first index rows

Ai,j is A row i, column j

rows are stored together

this is an arbitrary choice

11

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

12

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

12

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

12

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

12

5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows

12

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i * N + j] += A[i * N + k] * B[k * N + j];

13

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

14

loop orders and locality
loop body: Cij+ = AikBkj

kij order: Cij, Bkj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Cij has temporal locality

15

loop orders and locality
loop body: Cij+ = AikBkj

kij order: Cij, Bkj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Cij has temporal locality

15

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

16

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

16

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

16

which is better?

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

exercise: Which version has better spatial/temporal locality for…
…accesses to C? …accesses to A? …accesses to B?

17

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

18

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

18

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

18

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

18

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

18

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

19

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

19

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

19

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

19

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

19

matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

20

performance (with A=B)

0 100 200 300 400 500
N

0.0
0.2
0.4
0.6
0.8
1.0
1.2 billions of instructions

k inner
k outer

0 100 200 300 400 500
N

0.0

0.2

0.4

0.6

0.8

1.0 billions of cycles
k inner
k outer

21

alternate view 1: cycles/instruction

0 100 200 300 400 500
N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 cycles/instruction

22

alternate view 2: cycles/operation

0 100 200 300 400 500
N

1.0

1.5

2.0

2.5

3.0

3.5 cycles/multiply or add

23

counting misses: version 1
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i * N + j] += A[i * N + k] * B[k * N + j];

if N really large
assumption: can’t get close to storing N values in cache at once

for A: about N ÷ block size misses per k-loop
total misses: N3 ÷ block size

for B: about N misses per k-loop
total misses: N3

for C: about 1 ÷ block size miss per k-loop
total misses: N2 ÷ block size

24

counting misses: version 2
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i * N + j] += A[i * N + k] * B[k * N + j];

for A: about 1 misses per j-loop
total misses: N2

for B: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

for C: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

25

exercise: miss estimating (2)
for (int k = 0; k < 1000; k += 1)

for (int i = 0; i < 1000; i += 1)
for (int j = 0; j < 1000; j += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block

assuming: cache not close to big enough to hold 1K elements

estimate: approximately how many misses for A, B?

26

locality exercise (2)
/* version 2 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 3 */
for (int ii = 0; ii < N; ii += 32)

for (int jj = 0; jj < N; jj += 32)
for (int i = ii; i < ii + 32; ++i)

for (int j = jj; j < jj + 32; ++j)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?

27

a transformation
for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

28

a transformation
for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)

28

simple blocking
for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

29

simple blocking
for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

29

simple blocking
for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)

29

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

30

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

Temporal locality in Cijs

30

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

More spatial locality in Aik

30

simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}

Still have good spatial locality in Bkj, Cij

30

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[0*N+1], A[0*N+0], A[1*N+1] …(repeats N times)
…

…

31

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[0*N+1], A[0*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…

31

counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[0*N+1], A[0*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…

31

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[0*N+1], A[0*N+0], A[1*N+1] …(repeats N times)
…

…

likely cache misses: only first iterations of j loop

how many cache misses per iteration? usually one
A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

32

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[0*N+1], A[0*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…
likely cache misses: only first iterations of j loop

how many cache misses per iteration? usually one
A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

32

counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[0*N+1], A[0*N+0], A[1*N+1] …(repeats N times)
…
A[(N-1)*N+0], A[(N-1)*N+1], A[(N-1)*N+0], A[(N-1)*N+1] …
A[0*N+2], A[0*N+3], A[0*N+2], A[0*N+3] …
…
likely cache misses: only first iterations of j loop

how many cache misses per iteration? usually one
A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total

32

counting misses for B (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…

33

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…

likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

34

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

34

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

34

counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses

34

simple blocking – counting misses
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

N

2
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/2 total misses (before blocking: N2)

about 2N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before blocking)

about N ÷ block size misses from C per j-loop iteration
N3 ÷ (2 · block size) total misses (before: N3 ÷ block size)

35

simple blocking – counting misses
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

N

2
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/2 total misses (before blocking: N2)

about 2N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before blocking)

about N ÷ block size misses from C per j-loop iteration
N3 ÷ (2 · block size) total misses (before: N3 ÷ block size)

35

improvement in read misses

0 100 200 300 400 500 600
N

0

5

10

15

20read misses/1K instructions of unblocked

blocked (kk+=2)
unblocked

36

simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)

37

simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)

37

more than 3?
can we just keep doing this increase from 3 to some large X? …

assumption: X values from A would stay in cache
X too large — cache not big enough

assumption: X blocks from B would help with spatial locality
X too large — evicted from cache before next iteration

38

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

39

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

39

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

39

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

39

array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

39

simple blocking (2)
same thing for i in addition to k?
for (int kk = 0; kk < N; kk += 2) {
for (int ii = 0; ii < N; ii += 2) {
for (int j = 0; j < N; ++j) {

/* process a "block": */
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < ii + 2; ++i)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}
}

}

40

simple blocking — locality
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

}
}

now: more temporal locality in B
previously: access Bkj, then don’t use it again for a long time

41

simple blocking — locality
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

}
}

now: more temporal locality in B
previously: access Bkj, then don’t use it again for a long time

41

simple blocking — counting misses for A
for (int k = 0; k < N; k += 2)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 misses per loop with A (2 cache blocks)

total misses: N2

2 (same as only blocking in K)

42

simple blocking — counting misses for B
for (int k = 0; k < N; k += 2)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 ÷ block size misses per iteration with B

total misses: N3

2 · block size (before: N3

block size)

43

simple blocking — counting misses for C
for (int k = 0; k < N; k += 2)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2
block size misses per iteration with C

total misses: N3

2 · block size (same as blocking only in K)
44

simple blocking — counting misses (total)
for (int k = 0; k < N; k += 2)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

before:
A: N2

2
; B: N3

1 · block size; C
N3

1 · block size
after:
A: N2

2
; B: N3

2 · block size; C
N3

2 · block size
45

generalizing: divide and conquer
partial_matrixmultiply(float *A, float *B, float *C

int startI, int endI, ...) {
for (int i = startI; i < endI; ++i) {
for (int j = startJ; j < endJ; ++j) {

for (int k = startK; k < endK; ++k) {
...

}
matrix_multiply(float *A, float *B, float *C, int N) {
for (int ii = 0; ii < N; ii += BLOCK_I)
for (int jj = 0; jj < N; jj += BLOCK_J)

for (int kk = 0; kk < N; kk += BLOCK_K)
...
/* do everything for segment of A, B, C

that fits in cache! */
partial_matmul(A, B, C,

ii, ii + BLOCK_I, jj, jj + BLOCK_J,
kk, kk + BLOCK_K)

}
46

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

Cij += Aik · Bkj

47

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

Cij += Aik · Bkj

47

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

Cij += Aik · Bkj

47

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

Cij += Aik · Bkj

47

array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ loads
(assuming everything stays in cache)

Cij += Aik · Bkj

47

cache blocking efficiency
for each of N3/IJK matrix blocks:
load I × K elements of Aik:

≈ IK ÷ block size misses per matrix block
≈ N3/(J · blocksize) misses total

load K × J elements of Akj:
≈ N3/(I · blocksize) misses total

load I × J elements of Bij:
≈ N3/(K · blocksize) misses total

bigger blocks — more work per load!
catch: IK + KJ + IJ elements must fit in cache

otherwise estimates above don’t work
48

cache blocking rule of thumb
fill the most of the cache with useful data

and do as much work as possible from that

example: my desktop 32KB L1 cache

I = J = K = 48 uses 482 × 3 elements, or 27KB.

assumption: conflict misses aren’t important

49

systematic approach
for (int k = 0; k < N; ++k) {
for (int i = 0; i < N; ++i) {

Aik loaded once in this loop:
for (int j = 0; j < N; ++j)

Cij, Bkj loaded each iteration (if N big):
B[i*N+j] += A[i*N+k] * A[k*N+j];

values from Aik used N times per load

values from Bkj used 1 times per load
but good spatial locality, so cache block of Bkj together

values from Cij used 1 times per load
but good spatial locality, so cache block of Cij together

50

exercise: miss estimating (3)
for (int kk = 0; kk < 1000; kk += 10)

for (int jj = 0; jj < 1000; jj += 10)
for (int i = 0; i < 1000; i += 1)

for (int j = jj; j < jj+10; j += 1)
for (int k = kk; k < kk + 10; k += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1K elements, but
big enough to hold 500 or so

estimate: approximately how many misses for A, B?

hint 1: part of A, B loaded in two inner-most loops only needs to be
loaded once
hint 2: part of A can be reused between iterations of i loop

51

loop ordering compromises
loop ordering forces compromises:

for k: for i: for j: c[i,j] += a[i,k] * b[j,k]

perfect temporal locality in a[i,k]

bad temporal locality for c[i,j], b[j,k]

perfect spatial locality in c[i,j]

bad spatial locality in b[j,k], a[i,k]

cache blocking: work on blocks rather than rows/columns
have some temporal, spatial locality in everything

52

loop ordering compromises
loop ordering forces compromises:

for k: for i: for j: c[i,j] += a[i,k] * b[j,k]

perfect temporal locality in a[i,k]

bad temporal locality for c[i,j], b[j,k]

perfect spatial locality in c[i,j]

bad spatial locality in b[j,k], a[i,k]

cache blocking: work on blocks rather than rows/columns
have some temporal, spatial locality in everything

52

cache blocking pattern
no perfect loop order? work on rectangular matrix blocks

size amount used in inner loops based on cache size

in practice:
test performance to determine ‘size’ of blocks

53

backup slides

54

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

55

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

55

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

55

mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!

55

mapping of sets to memory (3-way)
3-way set assoc. cache

set 0
memory

array[0]

array[X]
where X = way size

array element size

accesses (way size) bytes apart in array?
beware conflict misses!

56

mapping of sets to memory (3-way)
3-way set assoc. cache

set 0
memory

array[0]

array[X]
where X = way size

array element size

accesses (way size) bytes apart in array?
beware conflict misses!

56

mapping of sets to memory (3-way)
3-way set assoc. cache

set 0
memory

array[0]

array[X]
where X = way size

array element size

accesses (way size) bytes apart in array?
beware conflict misses!

56

mapping of sets to memory (3-way)
3-way set assoc. cache

set 0
memory

array[0]

array[X]
where X = way size

array element size

accesses (way size) bytes apart in array?
beware conflict misses!

56

C and cache misses (4)
typedef struct {

int a_value, b_value;
int other_values[6];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

57

C and cache misses (4, rewrite)
int array[40]
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 40; i += 8)

a_sum += array[i];
for (int i = 1; i < 40; i += 8)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array starts at beginning of cache block.

How many data cache misses on a 2-way set associative 128B
cache with 16B cache blocks and LRU replacement?

58

C and cache misses (4, solution pt 1)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing 0, 8, 16, 24, 32, 1, 9, 17, 25, 33

0 (set 0), 8 (set 2), 16 (set 0), 24 (set 2), 32 (set 0)

1 (set 0), 9 (set 2), 17 (set 0), 25 (set 2), 33 (set 0)

59

C and cache misses (4, solution pt 1)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing 0, 8, 16, 24, 32, 1, 9, 17, 25, 33

0 (set 0), 8 (set 2), 16 (set 0), 24 (set 2), 32 (set 0)

1 (set 0), 9 (set 2), 17 (set 0), 25 (set 2), 33 (set 0)

59

C and cache misses (4, solution pt 2)
access set 0 after (LRU first) result
— —, —
array[0] —, array[0 to 3] miss
array[16] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss
array[1] array[32 to 35], array[0 to 3] miss
array[17] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss

6 misses for set 0

60

C and cache misses (4, solution pt 3)
access set 2 after (LRU first) result
— —, —
array[8] —, array[8 to 11] miss
array[24] array[8 to 11], array[24 to 27] miss
array[9] array[8 to 11], array[24 to 27] hit
array[25] array[16 to 19], array[32 to 35] hit

2 misses for set 1

61

arrays and cache misses (1)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {

even_sum += array[i + 0];
odd_sum += array[i + 1];

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

62

arrays and cache misses (2)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks? Would a set-associtiave cache be better?

63

C and cache misses (3)
typedef struct {

int a_value, b_value;
int other_values[10];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

observation: 12 ints in struct: only first two used

equivalent to accessing array[0], array[12], array[24], etc.

…then accessing array[1], array[13], array[25], etc.
64

C and cache misses (3, rewritten?)
int array[60];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 60; i += 12)

a_sum += array[i];
for (int i = 1; i < 60; i += 12)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array at beginning of cache block.

How many data cache misses on a 128B two-way set associative
cache with 16B cache blocks and LRU replacement?
observation 1: first loop has 5 misses — first accesses to blocks
observation 2: array[0] and array[1], array[12] and array[13], etc. in
same cache block

65

C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49

0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

66

C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49

0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

66

C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49

0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.

66

C and cache misses (3)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?

67

C and cache misses (3, rewritten?)
item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 1024; i += 128)

a_sum += array[i];
for (int i = 1; i < 1024; i += 128)

b_sum += array[i];

68

C and cache misses (4)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 4-way set associative 2KB
direct-mapped cache with 16B cache blocks?

69

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

70

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

70

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …
block at 0: array[0] through array[3]

block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]

block at 16+2KB: array[516] through array[519]

…

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …
block at 2032: array[508] through array[511]

block at 2032+2KB: array[1020] through array[1023]

70

thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …
block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …
block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …
block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]

70

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …

address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]

71

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]

block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
71

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
71

thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …
address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
71

L1 misses (with A=B)

0 100 200 300 400 500
N

0

20

40

60

80

100

120

140 read misses/1K instructions
k inner
k outer

72

L1 miss detail (1)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

read misses/1K instruction

73

L1 miss detail (2)

0 50 100 150 200
N

0

20

40

60

80

100

120

140

matrix smaller
than L1 cache

N = 93; 93 * 11 210

N = 114; 114 * 9 210

N = 27

read misses/1K instruction

74

addresses
B[k*114+j] is at 10 0000 0000 0100
B[k*114+j+1] is at 10 0000 0000 1000
B[(k+1)*114+j] is at 10 0011 1001 0100
B[(k+2)*114+j] is at 10 0101 0101 1100
…
B[(k+9)*114+j] is at 11 0000 0000 1100

test system L1 cache: 6 index bits, 6 block offset bits

75

addresses
B[k*114+j] is at 10 0000 0000 0100
B[k*114+j+1] is at 10 0000 0000 1000
B[(k+1)*114+j] is at 10 0011 1001 0100
B[(k+2)*114+j] is at 10 0101 0101 1100
…
B[(k+9)*114+j] is at 11 0000 0000 1100

test system L1 cache: 6 index bits, 6 block offset bits

75

conflict misses
powers of two — lower order bits unchanged

B[k*93+j] and B[(k+11)*93+j]:
1023 elements apart (4092 bytes; 63.9 cache blocks)

64 sets in L1 cache: usually maps to same set

B[k*93+(j+1)] will not be cached (next i loop)

even if in same block as B[k*93+j]

how to fix? improve spatial locality
(maybe even if it requires copying)

76

array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

77

array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)

78

keeping values in cache
can’t explicitly ensure values are kept in cache

…but reusing values effectively does this
cache will try to keep recently used values

cache optimization ideas: choose what’s in the cache
for thinking about it: load values explicitly
for implementing it: access only values we want loaded

79

	reviewing quiz
	less precise approxmation
	warmup: locality exercise
	warmup: miss counting
	2D arrays in C
	matrix multiply and loop orders
	exercise: which order?
	locality: diagrams
	MM performance
	miss counting
	miss count exericse

	warmup, take two: locality exercise
	cache blocking introduction
	transformation — 1D blocking
	missses in A
	missses in B
	overall misses
	actual performance
	more than two at a time?

	two-at-a-time
	generalizing
	diagram of general

	counting loads
	exercise
	cache blocking review
	backup slides
	mapping misses to sets (DM)
	mapping misses to sets (3-way)
	sparse array miss exericse

	array misses and cache results
	alternate cache miss exericse
	array misses and cache results (old sparse)
	set mapping (text)
	jagged edges: conflict misses
	addt'l order usage diagrams
	explicit counting

