
exceptions / virutal memory 1

1

last time
vector instructions

addt’l operations — set1, shuffle, …
vectorization examples
other vector instruction sets

process idea
thread = illusion of own CPU
multiple threads on one CPU with time multiplexing
address space = illusion of own memory
address translation to create address spaces

exceptions
hardware runs OS
asynchronous — external event (timer, I/O)
synchronous (program triggered) — system call (request), fault (error)

3

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

4

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

4

OS and time multiplexing
starts running instead of normal program

mechanism for this: exceptions (later)

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

5

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

6

context switch pseudocode
context_switch(last, next):
copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

7

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

8

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

9

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

10

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

11

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

12

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

13

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

14

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

15

exception implementation: notes
I/textbook describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

16

locating exception handlers

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

17

running the exception handler
hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

18

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

19

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

19

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

19

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

19

exception handler structure
1. save process’s state somewhere

2. do work to handle exception

3. restore a process’s state (maybe a different one)

4. jump back to program
handle_timer_interrupt:
mov_from_saved_pc save_pc_loc
movq %rax, save_rax_loc
... // choose new process to run here
movq new_rax_loc, %rax
mov_to_saved_pc new_pc
return_from_exception

20

exceptions and time slicing
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

exception table lookup

timer interrupt

handle_timer_interrupt:
...
...
set_address_space ssh_address_space
mov_to_saved_pc saved_ssh_pc
return_from_exception

21

defeating time slices?
my_exception_table:

...
my_handle_timer_interrupt:

// HA! Keep running me!
return_from_exception

main:
set_exception_table_base my_exception_table

loop:
jmp loop

22

defeating time slices?
wrote a program that tries to set the exception table:
my_exception_table:

...

main:
// "Load Interrupt
// Descriptor Table"
// x86 instruction to set exception table
lidt my_exception_table
ret

result: Segmentation fault (exception!)

23

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

24

privileged instructions
can’t let any program run some instructions

allows machines to be shared between users (e.g. lab servers)

examples:
set exception table
set address space
talk to I/O device (hard drive, keyboard, display, …)
…

processor has two modes:
kernel mode — privileged instructions work
user mode — privileged instructions cause exception instead

25

kernel mode
extra one-bit register: “are we in kernel mode”

exceptions enter kernel mode

return from exception instruction leaves kernel mode

26

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

27

what about editing OS code/data?
backdoor way to run priviliged instructions?

ruins illusion of having own memory?

28

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

29

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

30

protection fault
when program tries to access memory it doesn’t own

e.g. trying to write to OS address

when program tries to do other things that are not allowed

e.g. accessing I/O devices directly

e.g. changing exception table base register

OS gets control — can crash the program
or more interesting things

31

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

32

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

33

which requires kernel mode?
which operations are likely to fail (trigger an exception to run the
OS instead) if attempted in user mode?

A. reading data on disk by running special instructions that
communicate with the hard disk device

B. changing a program’s address space to allocate it more memory

C. returning from a standard library function

D. incrementing the stack pointer

34

kernel services
allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

35

Linux x86-64 system calls
special instruction: syscall

triggers trap (deliberate exception)

36

Linux syscall calling convention
before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls

37

Linux x86-64 hello world
.globl _start
.data
hello_str: .asciz "Hello, World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

38

approx. system call handler
sys_call_table:

.quad handle_read_syscall

.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

39

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

40

which of these require exceptions? context
switches?
A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

41

a note on terminology (1)
real world: inconsistent terms for exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
… and more

42

a note on terminology (2)
we use the term “kernel mode”

some additional terms:
supervisor mode
privileged mode
ring 0

some systems have multiple levels of privilege
different sets of priviliged operations work

43

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

44

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

45

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

45

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

46

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

46

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

46

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

46

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

47

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

48

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

49

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

49

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

50

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

50

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

50

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

50

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

51

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

51

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

51

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

51

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

51

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

51

on virtual address sizes
virtual address size = size of pointer?

often, but — sometimes part of pointer not used

example: typical x86-64 only use 48 bits
rest of bits have fixed value

virtual address size is amount used for mapping

52

address space sizes
amount of stuff that can be addressed = address space size

based on number of unique addresses

e.g. 32-bit virtual address = 232 byte virtual address space

e.g. 20-bit physical addresss = 220 byte physical address space

what if my machine has 3GB of memory (not power of two)?
not all addresses in physical address space are useful
most common situation (since CPUs support having a lot of memory)

53

address space sizes
amount of stuff that can be addressed = address space size

based on number of unique addresses

e.g. 32-bit virtual address = 232 byte virtual address space

e.g. 20-bit physical addresss = 220 byte physical address space

what if my machine has 3GB of memory (not power of two)?
not all addresses in physical address space are useful
most common situation (since CPUs support having a lot of memory)

53

exercise: page counting
suppose 32-bit virtual (program) addresses

and each page is 4096 bytes (212 bytes)

how many virtual pages?

232/212 = 220

54

exercise: page counting
suppose 32-bit virtual (program) addresses

and each page is 4096 bytes (212 bytes)

how many virtual pages?

232/212 = 220

54

exercise: page table size
suppose 32-bit virtual (program) addresses

suppose 30-bit physical (hardware) addresses

each page is 4096 bytes (212 bytes)

pgae table entries have physical page #, valid bit, kernel-mode bit

how big is the page table (if laid out like ones we’ve seen)?

220 entries ×(18 + 2) bits per entry
issue: where can we store that?

55

exercise: page table size
suppose 32-bit virtual (program) addresses

suppose 30-bit physical (hardware) addresses

each page is 4096 bytes (212 bytes)

pgae table entries have physical page #, valid bit, kernel-mode bit

how big is the page table (if laid out like ones we’ve seen)?

220 entries ×(18 + 2) bits per entry
issue: where can we store that?

55

exercise: address splitting
and each page is 4096 bytes (212 bytes)

split the address 0x12345678 into page number and page offset:

page #: 0x12345; offset: 0x678

56

exercise: address splitting
and each page is 4096 bytes (212 bytes)

split the address 0x12345678 into page number and page offset:

page #: 0x12345; offset: 0x678

56

backup slides

57

fast copies
Unix mechanism for starting a new process: fork()

creates a copy of an entire program!

(usually, the copy then calls execve — replaces itself with another
program)

how isn’t this really slow?

58

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only
can’t be shared?

59

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants
shared as read-only

can’t be shared?

59

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only

can’t be shared?

59

trick for extra sharing
sharing writeable data is fine — until either process modifies the
copy

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

60

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 1 0x12345
0x00602 1 1 0x12347
0x00603 1 1 0x12340
0x00604 1 1 0x200DF
0x00605 1 1 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

61

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

61

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

61

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 1 0x300FD
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

61

replacement policy
since disks are so slow, replacement policy really matters

will be implemented in software

like with caches: something like least-recently-used usually good
but exceptions: some access patterns won’t work well

62

LRU replacement?
problem: need to identify when pages are used

ideally every single time

not practical to do this exactly
HW would need to keep a list of when each page was accessed, or
SW would need to force every access to trigger a fault

trick: any page which hasn’t been used in a while is probably fine
not likely to make a difference whether it was last used 120 seconds ago
or 300 seconds ago

63

LRU approximation intuition
one idea: detect accesses by marking page table entry invalid
temporarily

e.g. every N seconds

on page fault:
if marked as invalid: make valid again

choose page which has stayed invalid for a long time

64

hardware support for access tracking
often hardware implements accessed bit in page table entries

set to 1 when page table entry is used by program

avoids requiring page fault

65

Linux x86-64 system calls
special instruction: syscall

triggers trap (deliberate exception)

66

Linux syscall calling convention
before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls

67

Linux x86-64 hello world
.globl _start
.data
hello_str: .asciz "Hello, World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

68

approx. system call handler
sys_call_table:

.quad handle_read_syscall

.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

69

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

70

system call wrappers
can’t write C code to generate syscall instruction

solution: call “wrapper” function written in assembly

71

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

72

	exceptions con't
	(context switch)
	hardware for exceptions
	exception handlers
	privileged instructions
	exercise

	system calls
	system call detail
	which exceptions?
	exception terminology note

	virtual memory
	address spaces
	address translation overview
	simple paging with four pages
	switching address spaces
	…kernel-only
	on address space sizes
	exercise: address splitting

	backup slides
	copy-on-write?
	approximating LRU (long)
	system call detail
	key-in timeline

