
bitwise (finish) / ISAs

1

last time
bitshifting

“move” bits left/right ≈ div/mult by power of two
decision: what to put in extra bits
arithmetic right (signed): copy sign bit
logical right (unsigned): add zeroes

bitwise operators
treat operands as arrays of bits, do operation on each pair of bits

mask = # with 1 (or 0) where we want to do something
& (and): something = extract bit (or clear bit)
| (or): something = set bit
(̂xor): something = flip bit

divide and conquer to solve bit puzzles
aside: usually and not faster than add

probably b/c processor designers thought add more important than and 2

problem: any-bit
is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: !(!(x))
another solution if you have − or + (bang in lab)

what if we don’t have ! or − or +
more like what real hardware components to work with are

how do we solve is x is, say, four bits?

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

3

problem: any-bit
is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: !(!(x))
another solution if you have − or + (bang in lab)

what if we don’t have ! or − or +
more like what real hardware components to work with are

how do we solve is x is, say, four bits?

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

3

problem: any-bit
is any bit of x set?

goal: turn 0 into 0, not zero into 1

easy C solution: !(!(x))
another solution if you have − or + (bang in lab)

what if we don’t have ! or − or +
more like what real hardware components to work with are

how do we solve is x is, say, four bits?

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

3

wasted work (1)

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

in general: (x & 1) | (y & 1) == (x | y) & 1
distributive property

(x | (x >> 1) | (x >> 2) | (x >> 3)) & 1

4

wasted work (1)

((x & 1) | ((x >> 1) & 1) | ((x >> 2) & 1) | ((x >> 3) & 1))

in general: (x & 1) | (y & 1) == (x | y) & 1
distributive property

(x | (x >> 1) | (x >> 2) | (x >> 3)) & 1

4

wasted work (2)
4-bit any set: (x | (x >> 1)| (x >> 2) | (x >> 3)) & 1

performing 3 bitwise ors

…each bitwise or does 4 OR operations

but only result of one of the 4!

(x)
(x >> 1)

5

wasted work (2)
4-bit any set: (x | (x >> 1)| (x >> 2) | (x >> 3)) & 1

performing 3 bitwise ors

…each bitwise or does 4 OR operations

but only result of one of the 4!
(x)

(x >> 1)

5

any-bit: looking at wasted work
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

x

x>>1

y=(x|x>>1)

final value wanted: x3|x2|x1|x0
previously:

compute x|(x>>1) for x1|x0;
(x>>2)|(x>>3) for x3|x2

observation: got both parts with just x|(x>>1)

6

any-bit: looking at wasted work
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

x

x>>1

y=(x|x>>1)

final value wanted: x3|x2|x1|x0
previously:

compute x|(x>>1) for x1|x0;
(x>>2)|(x>>3) for x3|x2

observation: got both parts with just x|(x>>1)

6

any-bit: looking at wasted work
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

x

x>>1

y=(x|x>>1)
final value wanted: x3|x2|x1|x0
previously:

compute x|(x>>1) for x1|x0;
(x>>2)|(x>>3) for x3|x2

observation: got both parts with just x|(x>>1)

6

any-bit: divide and conquer
x3 x2 x1 x0

0 x3 x2 x1

(0|x3) (x3|x2) (x2|x1) (x1|x0)

0 0 (0|x3) (x3|x2)

x3 (x3|x2) (x3|x2|x1) (x3|x2|x1|x0)

x

x>>1

y=(x>>1)|x

y>>2

y|(y>>2)

7

any-bit: divide and conquer

four-bit input x = x3x2x1x0

x | (x >> 1) = (x3|0)(x2|x3)(x1|x2)(x0|x1) = y1y2y3y4

y | (y >> 2) = (y1|0)(y2|0)(y3|y1)(y4|y2) = z1z2z3z4

z4 = (y4|y2) = ((x2|x3)|(x0|x1)) = x0|x1|x2|x3 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

}

x3 x2 x1 x0

(x3|x2) (x1|x0)

(x3|x2|x1|x0)

8

any-bit: divide and conquer

four-bit input x = x3x2x1x0

x | (x >> 1) = (x3|0)(x2|x3)(x1|x2)(x0|x1) = y1y2y3y4

y | (y >> 2) = (y1|0)(y2|0)(y3|y1)(y4|y2) = z1z2z3z4

z4 = (y4|y2) = ((x2|x3)|(x0|x1)) = x0|x1|x2|x3 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

}

x3 x2 x1 x0

(x3|x2) (x1|x0)

(x3|x2|x1|x0)

8

any-bit: divide and conquer

four-bit input x = x3x2x1x0

x | (x >> 1) = (x3|0)(x2|x3)(x1|x2)(x0|x1) = y1y2y3y4

y | (y >> 2) = (y1|0)(y2|0)(y3|y1)(y4|y2) = z1z2z3z4

z4 = (y4|y2) = ((x2|x3)|(x0|x1)) = x0|x1|x2|x3 “is any bit set?”

unsigned int any_of_four(unsigned int x) {
int part_bits = (x >> 1) | x;
return ((part_bits >> 2) | part_bits) & 1;

}

x3 x2 x1 x0

(x3|x2) (x1|x0)

(x3|x2|x1|x0)

8

any-bit: divide and conquer
x7 x6 x5 x4 x3 x2 x1 x0

0 x7 x6 x5 x4 x3 x2 x1

(0|x7) (x7|x6) (x6|x5) (x5|x4) (x4|x3) (x3|x2) (x2|x1) (x1|x0)

0 0 (0|x7) (x7|x6) (x6|x5) (x5|x4) (x4|x3) (x3|x2)

(0|0|0|x7) (0|x7|x6|x5) (x6|x5|x4|x3) (x4|x3|x2|x1)
(0|0|x7|x6) (x7|x6|x5|x4) (x5|x4|x3|x2) (x3|x2|x1|x0)

x

x>>1

y=(x>>1)|x

y>>2

z=y|(y>>2)

9

any-bit-set: 32 bits
unsigned int any(unsigned int x) {

x = (x >> 1) | x;
x = (x >> 2) | x;
x = (x >> 4) | x;
x = (x >> 8) | x;
x = (x >> 16) | x;
return x & 1;

}

10

bitwise strategies
use paper, find subproblems, etc.

mask and shift
(x & 0xF0) >> 4

factor/distribute
(x & 1) | (y & 1) == (x | y) & 1

divide and conquer

common subexpression elimination
return ((−!!x) & y) | ((−!x) & z)
becomes
d = !x; return ((−!d) & y) | ((−d) & z)

11

exercise
Which of these will swap least significant and second least
significant bit of an unsigned int x? (bits uvwxyz become
uvwxzy)
/* version A */

return ((x >> 1) & 1) | (x & (~1));

/* version B */
return ((x >> 1) & 1) | ((x << 1) & (~2)) | (x & (~3));

/* version C */
return (x & (~3)) | ((x & 1) << 1) | ((x >> 1) & 1);

/* version D */
return (((x & 1) << 1) | ((x & 3) >> 1)) ^ x;

12

version A
/* version A */

return ((x >> 1) & 1) | (x & (~1));
// ^^^^^^^^^^^^^^
// uvwxyz --> 0uvwxy -> 00000y

// ^^^^^^^^^^
// uvwxyz --> uvwxy0

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 00000y | uvwxy0 = uvwxyy

13

version B
/* version B */

return ((x >> 1) & 1) | ((x << 1) & (~2)) | (x & (~3));
// ^^^^^^^^^^^^^^
// uvwxyz --> 0uvwxy --> 00000y

// ^^^^^^^^^^^^^^^
// uvwxyz --> vwxyz0 --> vwxy00

// ^^^^^^^^^
// uvwxyz --> uvwx00

14

version C
/* version C */

return (x & (~3)) | ((x & 1) << 1) | ((x >> 1) & 1);
// ^^^^^^^^^^
// uvwxyz --> uvwx00

// ^^^^^^^^^^^^^^
// uvwxyz --> 00000z --> 0000z0

// ^^^^^^^^^^^^^
// uvwxyz --> 0uvwxy --> 00000y

15

version D
/* version D */

return (((x & 1) << 1) | ((x & 3) >> 1)) ^ x;
// ^^^^^^^^^^^^^^^
// uvwxyz --> 00000z --> 0000z0

// ^^^^^^^^^^^^^^
// uvwxyz --> 0000yz --> 00000y

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 0000zy ^ uvwxyz --> uvwx(z XOR y)(y XOR z)

16

expanded code
int lastBit = x & 1;
int secondToLastBit = x & 2;
int rest = x & ~3;
int lastBitInPlace = lastBit << 1;
int secondToLastBitInPlace = secondToLastBit >> 1;
return rest | lastBitInPlace | secondToLastBitInPlace;

17

exercise 2?

18

ISAs being manufactured today
(ISA = instruction set architecture)

x86 — dominant in desktops, servers

ARM — dominant in mobile devices

POWER — Wii U, IBM supercomputers and some servers

MIPS — common in consumer wifi access points

SPARC — some Oracle servers, Fujitsu supercomputers

z/Architecture — IBM mainframes

Z80 — TI calculators

SHARC — some digital signal processors

RISC V — some embedded

…
19

microarchitecture v. instruction set
microarchitecture — design of the hardware

“generations” of Intel’s x86 chips
different microarchitectures for very low-power versus laptop/desktop
changes in performance/efficiency

instruction set — interface visible by software
what matters for software compatibility
many ways to implement (but some might be easier)

20

exercise
which of the following changes to a processor are instruction set
changes?

A. increasing the number of registers available in assembly

B. decreasing the runtime of the add instruction

C. making the machine code for add instructions shorter

D. removing a multiply instruction

E. allowing the add instruction to have two memory operands
(instead of two register operands))

21

instruction set architecture goals
exercise: what are some goals to have when designing an instruction
set?

22

ISA variation
instruction set instr.

length
normal
registers

approx.
instrs.

x86-64 1–15 byte 16 1500
Y86-64 1–10 byte 15 18
ARMv7 4 byte* 16 400
POWER8 4 byte 32 1400
MIPS32 4 byte 31 200
Itanium 41 bits* 128 300
Z80 1–4 byte 7 40
VAX 1–14 byte 8 150
z/Architecture 2–6 byte 16 1000
RISC V 4 byte* 31 500*

23

other choices: condition codes?
instead of:
cmpq %r11, %r12
je somewhere

could do:
/* _B_ranch if _EQ_ual */
beq %r11, %r12, somewhere

24

other choices: addressing modes
ways of specifying operands. examples:

x86-64: 10(%r11,%r12,4)

ARM: %r11 << 3 (shift register value by constant)

VAX: ((%r11)) (register value is pointer to pointer)

25

other choices: number of operands
add src1, src2, dest

ARM, POWER, MIPS, SPARC, …

add src2, src1=dest
x86, AVR, Z80, …

VAX: both

26

CISC and RISC
RISC — Reduced Instruction Set Computer

reduced from what?

CISC — Complex Instruction Set Computer

27

CISC and RISC
RISC — Reduced Instruction Set Computer

reduced from what?

CISC — Complex Instruction Set Computer

27

some VAX instructions

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

POLY x, coefficientsLen, coefficientsPtr
Evaluate the polynomial whose coefficients are pointed to by coefficientPtr at the
value x.

EDITPC sourceLen, sourcePtr, patternLen, patternPtr
Edit the string pointed to by sourcePtr using the pattern string specified by
patternPtr.

28

microcode

MATCHC haystackPtr, haystackLen, needlePtr, needleLen
Find the position of the string in needle within haystack.

loop in hardware???

typically: lookup sequence of microinstructions (“microcode”)

secret simpler instruction set

29

Why RISC?
complex instructions were usually not faster

(even though programs with simple instructions were bigger)

complex instructions were harder to implement

compilers were replacing hand-written assembly
correct assumption: almost no one will write assembly anymore
incorrect assumption: okay to recompile frequently

30

typical RISC ISA properties
fewer, simpler instructions

seperate instructions to access memory

fixed-length instructions

more registers

no “loops” within single instructions

no instructions with two memory operands

few addressing modes

32

typical RISC ISA properties
fewer, simpler instructions

seperate instructions to access memory

fixed-length instructions

more registers

no “loops” within single instructions

no instructions with two memory operands

few addressing modes

34

is CISC the winner?
well, can’t get rid of x86 features

backwards compatibility matters

more application-specific instructions

but…compilers tend to use more RISC-like subset of instructions

modern x86: often convert to RISC-like “microinstructions”
sounds really expensive, but …
lots of instruction preprocessing used in ‘fast’ CPU designs
(even for RISC ISAs)

35

ISAs: who does the work?
CISC-like (harder to make hardware, easier to use assembly)

choose instructions with particular assembly language in mind?
hardware designer provides operations assembly-writers wants

let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
hardware designer exposes things it can do efficiently to assembly-writers

building blocks for compiler to make efficient programs?

note: general differences — no firm RISC v. CISC line

36

ISAs: who does the work?
CISC-like (harder to make hardware, easier to use assembly)

choose instructions with particular assembly language in mind?
hardware designer provides operations assembly-writers wants

let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
hardware designer exposes things it can do efficiently to assembly-writers

building blocks for compiler to make efficient programs?

note: general differences — no firm RISC v. CISC line

36

ISAs: who does the work?
CISC-like (harder to make hardware, easier to use assembly)

choose instructions with particular assembly language in mind?
hardware designer provides operations assembly-writers wants

let the hardware worry about optimizing it?

RISC-like (easier to make hardware, harder to use assembly)
choose instructions with particular HW implementation in mind?
hardware designer exposes things it can do efficiently to assembly-writers

building blocks for compiler to make efficient programs?

note: general differences — no firm RISC v. CISC line

36

backup slides

37

miscellaneous bit manipulation
common bit manipulation instructions are not in C:

rotate (x86: ror, rol) — like shift, but wrap around

first/last bit set (x86: bsf, bsr)

population count (some x86: popcnt) — number of bits set

byte swap: (x86: bswap)

38

other choices: instruction complexity
instructions that write multiple values?

x86-64: push, pop, movsb, …

more?

39

exercise
Which of these are true only if x has all of bit 0, 3, 6, and 9 set
(where bit 0 = least significant bit)?
/* version A */

x = (x >> 6) & x;
x = (x >> 3) & x;
return x & 1;

/* version B */
return ((x >> 9) & 1) & ((x >> 6) & 1) & ((x >> 3) & 1) & x;

/* version C */
return (x & 0x100) & (x & 0x40) & (x & 0x04) & (x & 0x01);

/* version D */
return (x & 0x145) == 0x145;

40

41

	last time
	case study: any-bit?
	problem setup
	wasted work with naive 4 bit soln
	a divide and conquer solution

	general strategies

	bitwise exercise (1)
	ISAS made today
	microarchitectures versus ISAs
	ISA goals?

	ISA choices
	CISC v RISC
	really complex instructions: VAX
	why RISC
	typical RISC properties
	philosophical gap: who does the work?
	typical RISC properties
	Is CISC the winner?

	backup slides
	misc. bitwise operations
	addt'l ISA choices

	bitwise exercise (2)

