
1

changelog
Changes since first lecture:

14 October 2021: add quiz review slides

2

last time
combining forwarding with stalling

forwarding with different pipelines

control hazards
don’t know correct PC value in time

branch prediction
guess outcome of conditional jump
correct wrong guess by “squashing” incorrect instructions

3

quiz Q1
“Which of the following assembly snippets would exercise a data
hazard if executed on the processor described above?”

data hazard = data dependency that causes problem with naive
pipeline

need to know how instructions divided into stages

if processor handles hazard through stalling or forwarding:
still a hazard

4

quiz Q3
cycle # 0 1 2 3 4 5 6 7 8 9

mrmovq (%rcx), %rax F D E MW
subq %rcx, %rax F D D E MW

5

quiz Q4 (irmovq)
addq %r8, %r9
subq %r9, %r10
irmovq $42, %r9
forwarding to irmovq?

don’t need it — irmovq doesn’t read

if you wanted to, how would you avoid in HCLRS?
set reg_srcB to REG_NONE for irmovq (and similar)
special case on forwarding MUX (not recommended)

do we need to avoid?
not in this case, but…
don’t want to end up stalling based on detecting false load/use hazard

6

quiz Q5+6
cycle # 0 1 2 3 4 5 6 7 8 9

addq %rcx, %rdx F D E1E2 M W
jle foo F D E1E2 M W
foo: rrmovq (mispredict) F D E1
irmovq (mispredict) F D
rmmovq (mispredict) F
xorq F D E1E2 M W

7

quiz Q5+6 (alt)
cycle # 0 1 2 3 4 5 6 7 8 9

addq %rcx, %rdx F D E1E2 M W
jle foo F D E1E2 M W
foo: rrmovq (mispredict) F D E1
nop (after squashing) E2 M W
irmovq (mispredict) F D
nop (after squashing) E1E2 M W
rmmovq (mispredict) F
nop (after squashing) D E1E2 M W
xorq F D E1E2 M W

8

fetch/decode logic — advance or not

rA, rB, etc.

MUX
from instr. memory

should we stall?

…

9

fetch/decode logic — bubble or not

rA

MUX
no-op value — 0xF

should we send
no-op value (“bubble”)?

10

HCLRS signals
register aB {

...
}

HCLRS: every register bank has these MUXes built-in

stall_B: keep old value for all registers
register input ← register output
pipeline: keep same instruction in this stage next cycle

bubble_B: use default value for all registers
register input ← default value
pipeline: put no-operation in this stage next cycle

11

exercise
register aB {

value : 8 = 0xFF;
}
...
time a_value B_value stall_B bubble_B
0 0x01 0xFF 0 0
1 0x02 ??? 1 0
2 0x03 ??? 0 0
3 0x04 ??? 0 1
4 0x05 ??? 0 0
5 0x06 ??? 0 0
6 0x07 ??? 1 0
7 0x08 ??? 1 0
8 ???

stall: keep old value
bubble: store default value

12

exercise result
register aB {

value : 8 = 0xFF;
}
...
time a_value B_value stall_B bubble_B
0 0x01 0xFF 0 0
1 0x02 0x01 1 0
2 0x03 0x01 0 0
3 0x04 0x03 0 1
4 0x05 0xFF 0 0
5 0x06 0x05 0 0
6 0x07 0x06 1 0
7 0x08 0x06 1 0
8 0x06

13

exercise: squash + stall (1)
time fetch decode execute memory writeback

1 E D C B A

2 E nop C nop B

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

* ? ? ? ?

* B S B N

exercise: what are the ?s
write down your answers,
then compare with your neighbors

14

exercise: squash + stall (1)
time fetch decode execute memory writeback

1 E D C B A

2 E nop C nop B

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

* ? ? ? ?

* B S B N

exercise: what are the ?s
write down your answers,
then compare with your neighbors

14

exercise: squash + stall (2)
time fetch decode execute memory writeback

1 E D C B A

2 F E C nop B

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

? ? ? ? ?

N N S B N

exercise: what are the ?s
write down your answers,
then compare with your neighbors

15

exercise: squash + stall (2)
time fetch decode execute memory writeback

1 E D C B A

2 F E C nop B

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

? ? ? ? ?

N N S B N

exercise: what are the ?s
write down your answers,
then compare with your neighbors

15

exercise: squash + stall (2)
time fetch decode execute memory writeback

1 E D C B A

2 F E C nop B

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

? ? ? ? ?

N N S B N

exercise: what are the ?s
write down your answers,
then compare with your neighbors

15

implementing stalling + prediction
need to handle updating PC:

stalling: retry same PC
prediction: use predicted PC
misprediction: correct mispredicted PC

need to updating pipeline registers:
repeat stage in stall: keep same values
don’t go to next stage in stall: insert nop values
ignore instructions from misprediction: insert nop values

16

stalling: bubbles + stall
cycle # 0 1 2 3 4 5 6 7 8

mrmovq 0(%rax), %rbx F D E M W
subq %rbx, %rcx F D D E M W
inserted nop E M W
irmovq $10, %rbx F F D E M W
…

keep same instruction in cycle 3
during cycle 2:
stall_D = 1
stall_F = 1 or extra f_pc MUX

insert nop in cycle 3
during cycle 2:
bubble_E = 1

need way to keep pipeline register unchanged to repeat a stage
(and to replace instruction with a nop)

17

stalling: bubbles + stall
cycle # 0 1 2 3 4 5 6 7 8

mrmovq 0(%rax), %rbx F D E M W
subq %rbx, %rcx F D D E M W
inserted nop E M W
irmovq $10, %rbx F F D E M W
…

keep same instruction in cycle 3
during cycle 2:
stall_D = 1
stall_F = 1 or extra f_pc MUX

insert nop in cycle 3
during cycle 2:
bubble_E = 1

need way to keep pipeline register unchanged to repeat a stage
(and to replace instruction with a nop)

17

stalling: bubbles + stall
cycle # 0 1 2 3 4 5 6 7 8

mrmovq 0(%rax), %rbx F D E M W
subq %rbx, %rcx F D D E M W
inserted nop E M W
irmovq $10, %rbx F F D E M W
…

keep same instruction in cycle 3
during cycle 2:
stall_D = 1
stall_F = 1 or extra f_pc MUX

insert nop in cycle 3
during cycle 2:
bubble_E = 1

need way to keep pipeline register unchanged to repeat a stage
(and to replace instruction with a nop)

17

jump misprediction: bubbles
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9 F D E M W
jle target (not taken) F D E M W
target: xorq %rax, %rax (mispredicted) F D -
inserted nop E M W
andq %rbx, %rcx (mispredicted) F -
inserted nop D E M W
subq %r9, %r10 (instr. after jle) F D E M W

need option: replace instruction with nop (“bubble”)

18

squashing with stall/bubble
time fetch decode execute memory writeback

1 subq

2 jne subq

3 addq [?] jne subq (set ZF)

4 rmmovq [?] addq [?] jne (use ZF) subq

5 xorq nothing nothing jne (done) subq
stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

N N

N N N

*** B B N N
can compute bubble signal based on execute phase
won’t even start CC write for addq

19

squashing with stall/bubble
time fetch decode execute memory writeback

1 subq

2 jne subq

3 addq [?] jne subq (set ZF)

4 rmmovq [?] addq [?] jne (use ZF) subq

5 xorq nothing nothing jne (done) subq
stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

N N

N N N

*** B B N N
can compute bubble signal based on execute phase
won’t even start CC write for addq

19

squashing with stall/bubble
time fetch decode execute memory writeback

1 subq

2 jne subq

3 addq [?] jne subq (set ZF)

4 rmmovq [?] addq [?] jne (use ZF) subq

5 xorq nothing nothing jne (done) subq
stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

N N

N N N

*** B B N N
can compute bubble signal based on execute phase
won’t even start CC write for addq

19

squashing with stall/bubble
time fetch decode execute memory writeback

1 subq

2 jne subq

3 addq [?] jne subq (set ZF)

4 rmmovq [?] addq [?] jne (use ZF) subq

5 xorq nothing nothing jne (done) subq
stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

N N

N N N

*** B B N N

can compute bubble signal based on execute phase
won’t even start CC write for addq

19

squashing with stall/bubble
time fetch decode execute memory writeback

1 subq

2 jne subq

3 addq [?] jne subq (set ZF)

4 rmmovq [?] addq [?] jne (use ZF) subq

5 xorq nothing nothing jne (done) subq
stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

N N

N N N

*** B B N N
can compute bubble signal based on execute phase
won’t even start CC write for addq

19

squashing HCLRS
just_detected_mispredict =

e_icode == JXX && !e_branchTaken;
bubble_D = just_detected_mispredict || ...;
bubble_E = just_detected_mispredict || ...;

20

ret bubbles
cycle # 0 1 2 3 4 5 6 7 8 9

addq %r8, %r9 F D E M W
ret F D E M W
??? F
inserted nop D E M W
??? F
inserted nop D E M W
??? F
inserted nop D E M W
rrmovq %rax, %r8 (return address) F D E M W

need option: replace instruction with nop (“bubble”)
21

ret stall
time fetch decode execute memory writeback
0 call

1 ret call

2 wait for ret ret call

3 wait for ret nothing ret call (store)

4 wait for ret nothing nothing ret (load) call

5 addq nothing nothing nothing ret

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

*** N N

*** B N N

*** B N N N

B N N N

22

ret stall
time fetch decode execute memory writeback
0 call

1 ret call

2 wait for ret ret call

3 wait for ret nothing ret call (store)

4 wait for ret nothing nothing ret (load) call

5 addq nothing nothing nothing ret

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

*** N N

*** B N N

*** B N N N

B N N N

22

ret stall
time fetch decode execute memory writeback
0 call

1 ret call

2 wait for ret ret call

3 wait for ret nothing ret call (store)

4 wait for ret nothing nothing ret (load) call

5 addq nothing nothing nothing ret

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

*** N N

*** B N N

*** B N N N

B N N N

22

ret stall
time fetch decode execute memory writeback
0 call

1 ret call

2 wait for ret ret call

3 wait for ret nothing ret call (store)

4 wait for ret nothing nothing ret (load) call

5 addq nothing nothing nothing ret

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

*** N N

*** B N N

*** B N N N

B N N N

22

ret stall
time fetch decode execute memory writeback
0 call

1 ret call

2 wait for ret ret call

3 wait for ret nothing ret call (store)

4 wait for ret nothing nothing ret (load) call

5 addq nothing nothing nothing ret

stall (S) = keep old value; normal (N) = use new value
bubble (B) = use default (no-op);

N

*** N N

*** B N N

*** B N N N

B N N N

22

HCLRS bubble example
register fD {

icode : 4 = NOP;
rA : 4 = REG_NONE;
rB : 4 = REG_NONE;
...

};
wire need_ret_bubble : 1;
need_ret_bubble = (D_icode == RET ||

E_icode == RET ||
M_icode == RET);

bubble_D = (need_ret_bubble ||
... /* other cases */);

23

building the PC update (one possibility)

PC

to instr. mem

+ instr. length

(1) normal case: PC ← PC + instr len

(2) immediate: call/jmp, and prediction for cond. jumps
(3) repeat previous PC for stalls (load/use hazard, halt, ret?)
(4) correct for misprediction of conditional jump
(5) correct for missing return address for ret

immediate value

MUX

predicted PC

MUX

next PC from cond. jump
return address from ret

via instr. mem

via execute/memory pipeline regs
via memory/writeback pipeline regs

24

building the PC update (one possibility)

PC

to instr. mem

+ instr. length

(1) normal case: PC ← PC + instr len
(2) immediate: call/jmp, and prediction for cond. jumps

(3) repeat previous PC for stalls (load/use hazard, halt, ret?)
(4) correct for misprediction of conditional jump
(5) correct for missing return address for ret

immediate value

MUX

predicted PC

MUX

next PC from cond. jump
return address from ret

via instr. mem

via execute/memory pipeline regs
via memory/writeback pipeline regs

24

building the PC update (one possibility)

PC

to instr. mem

+ instr. length

(1) normal case: PC ← PC + instr len
(2) immediate: call/jmp, and prediction for cond. jumps
(3) repeat previous PC for stalls (load/use hazard, halt, ret?)

(4) correct for misprediction of conditional jump
(5) correct for missing return address for ret

immediate value

MUX

predicted PC

MUX

next PC from cond. jump
return address from ret

via instr. mem

via execute/memory pipeline regs
via memory/writeback pipeline regs

24

building the PC update (one possibility)

PC

to instr. mem

+ instr. length

(1) normal case: PC ← PC + instr len
(2) immediate: call/jmp, and prediction for cond. jumps
(3) repeat previous PC for stalls (load/use hazard, halt, ret?)
(4) correct for misprediction of conditional jump

(5) correct for missing return address for ret

immediate value

MUX

predicted PC

MUX

next PC from cond. jump

return address from ret
via instr. mem

via execute/memory pipeline regs
via memory/writeback pipeline regs

24

building the PC update (one possibility)

PC

to instr. mem

+ instr. length

(1) normal case: PC ← PC + instr len
(2) immediate: call/jmp, and prediction for cond. jumps
(3) repeat previous PC for stalls (load/use hazard, halt, ret?)
(4) correct for misprediction of conditional jump
(5) correct for missing return address for ret

immediate value

MUX

predicted PC

MUX

next PC from cond. jump
return address from ret

via instr. mem

via execute/memory pipeline regs
via memory/writeback pipeline regs

24

building the PC update (one possibility)

PC

to instr. mem

+ instr. length

(1) normal case: PC ← PC + instr len
(2) immediate: call/jmp, and prediction for cond. jumps
(3) repeat previous PC for stalls (load/use hazard, halt, ret?)
(4) correct for misprediction of conditional jump
(5) correct for missing return address for ret

immediate value

MUX

predicted PC

MUX

next PC from cond. jump
return address from ret

via instr. mem

via execute/memory pipeline regs
via memory/writeback pipeline regs

24

PC update overview
predict based on instruction length + immediate

override prediction with stalling sometimes
correct when prediction is wrong just before fetching

retrieve corrections from pipeline register outputs for jCC/ret instruction

above is what textbook does
alternative: could instead correct prediction just before setting PC
register

retrieve corrections into PC cycle before corrections used
moves logic from beginning-of-fetch to end-of-previous-fetch

I think this is more intuitive, but consistency with textbook is less confusing…
25

after forwarding/prediction
where do we still need to stall?

memory output needed in fetch
ret followed by anything

memory output needed in exceute
mrmovq or popq + use
(in immediatelly following instruction)

26

overall CPU
5 stage pipeline

1 instruction completes every cycle — except hazards

most data hazards: solved by forwarding

load/use hazard: 1 cycle of stalling

jXX control hazard: branch prediction + squashing
2 cycle penalty for misprediction
(correct misprediction after jXX finishes execute)

ret control hazard: 3 cycles of stalling
(fetch next instruction after ret finishes memory)

27

recall: data/instruction memory
model in CPU: one cycle per access

but earlier — had to talk to memory on different chip

can’t do that in one cycle

solution: keep copies of part of memory (“cache”)
copy can be accessed quickly
hope: almost always use copy?

28

2004 CPU

Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 29

2004 CPU
Registers

L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 29

2004 CPU
Registers
L1 cache

L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 29

2004 CPU
Registers
L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 29

2004 CPU
Registers
L1 cache
L2 cache

L3 cache
main

memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 29

2004 CPU
Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 29

2004 CPU
Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 29

cache: real memory

Data Memory
AKA

L1 Data Cache

address

input (if writing)
write enable

value

ready?

L2 Cache

30

cache: real memory

Data Memory
AKA

L1 Data Cache

address

input (if writing)
write enable

value

ready?

L2 Cache

30

the place of cache

CPU Cache

RAM
or

another
cache

read 0xABCD?
read 0x1234?

0xABCD is 1000
0x1234 is 4000

read 0xABCD?

0xABCD is 1000

31

memory hierarchy goals
performance of the fastest (smallest) memory

hide 100x latency difference? 99+% hit (= value found in cache) rate

capacity of the largest (slowest) memory

32

memory hierarchy assumptions
temporal locality
“if a value is accessed now, it will be accessed again soon”

caches should keep recently accessed values

spatial locality
“if a value is accessed now, adjacent values will be accessed soon”

caches should store adjacent values at the same time

natural properties of programs — think about loops

33

locality examples
double computeMean(int length, double *values) {

double total = 0.0;
for (int i = 0; i < length; ++i) {

total += values[i];
}
return total / length;

}

temporal locality: machine code of the loop

spatial locality: machine code of most consecutive instructions

temporal locality: total, i, length accessed repeatedly

spatial locality: values[i+1] accessed after values[i]

34

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 1 01 AA BB
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 1 01 AA BB
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

35

building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 1 01 AA BB
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011?

exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
direct-mapped

35

cache operation (read)

valid tag data
1 10 00 11 22 33

1 11 B4 B5 B6 B7

100110b 10

index

=

tag

AND is hit? (1)

offset

data (B6)

36

cache operation (read)

valid tag data
1 10 00 11 22 33

1 11 B4 B5 B6 B7

100110b 10

index

=

tag

AND is hit? (1)

offset

data (B6)

36

cache operation (read)

valid tag data
1 10 00 11 22 33

1 11 B4 B5 B6 B7

100110b 10

index

=

tag

AND is hit? (1)

offset

data (B6)

36

backup slides

37

PC update (adding prediction, stall)

PC

MUX

convert icode icode (from instr. mem)

+2
+10…

to instr. mem

MUX

control logic need to stall?
“taken” (from execute), ret ready?

jump target
addr. after mispredicted jump/ret address

38

PC update (adding prediction, stall)

PC

MUX

convert icode icode (from instr. mem)

+2
+10…

to instr. mem

MUX

control logic need to stall?
“taken” (from execute), ret ready?

jump target
addr. after mispredicted jump/ret address

38

PC update (rearranged)

predicted PC
(replaces PC)

MUX

convert icode icode (from instr. mem)

need to stall?

+2
+10
jump/call target…

MUX

control logic

to stall logic

taken?; etc

…
address after mispred. jump

address from ret to instr. mem.

same logic as before — but happens in next cycle
inputs are from slightly different place…

39

PC update (rearranged)

predicted PC
(replaces PC)

MUX

convert icode icode (from instr. mem)

need to stall?

+2
+10
jump/call target…

MUX

control logic

to stall logic

taken?; etc

…
address after mispred. jump

address from ret to instr. mem.

same logic as before — but happens in next cycle
inputs are from slightly different place…

39

PC update (rearranged)

predicted PC
(replaces PC)

MUX

convert icode icode (from instr. mem)

need to stall?

+2
+10
jump/call target…

MUX

control logic

to stall logic

taken?; etc

…
address after mispred. jump

address from ret to instr. mem.

same logic as before — but happens in next cycle
inputs are from slightly different place…

39

PC update (rearranged)

predicted PC
(replaces PC)

MUX

convert icode icode (from instr. mem)

need to stall?

+2
+10
jump/call target…

MUX

control logic

to stall logic

taken?; etc

…
address after mispred. jump

address from ret to instr. mem.

same logic as before — but happens in next cycle
inputs are from slightly different place…

39

rearranged PC update in HCL
/* replacing the PC register: */
register fF {

predictedPC: 64 = 0;
}

/* actual input to instruction memory */
pc = [

conditionCodesSaidNotTaken : jumpValP;
/* from later in pipeline */

...
1: F_predictedPC;

];

40

why rearrange PC update?
either works

correct PC at beginning or end of cycle?
still some time in cycle to do so…

maybe easier to think about branch prediction this way?

41

fetch/decode logic — advance or not

rA, rB, etc.

MUX
from instr. memory

should we stall?

…

42

exercise

PC

Instr.
Mem.

register file
srcA

srcB

R[srcA]

R[srcB]
dstE

next R[dstE]

dstM

next R[dstM]

split

0xF

ADDADD

add 2

path time
add 2 50 ps
instruction memory 200 ps
register file read 125 ps
add 100 ps
register file write 125 ps

pipeline register delay: 10ps

how will throughput improve if we double the speed of the
instruction memory?
A. 2.00x B. 1.70x to 1.99x
C. 1.60x to 1.69x D. 1.50x to 1.59x
E. less than 1.50x

43

exercise

PC

Instr.
Mem.

register file
srcA

srcB

R[srcA]

R[srcB]
dstE

next R[dstE]

dstM

next R[dstM]

split

0xF

ADDADD

add 2

path time
add 2 50 ps
instruction memory 200 ps
register file read 125 ps
add 100 ps
register file write 125 ps

pipeline register delay: 10ps

how will throughput improve if we double the speed of the
instruction memory?
A. 2.00x B. 1.70x to 1.99x
C. 1.60x to 1.69x D. 1.50x to 1.59x
E. less than 1.50x

1
135
÷ 1

210
= 1.56x — D

43

	last time
	HCLRS support for prediction/stalling
	bubble/stall exercise (1)
	bubble/stall exercise (2)

	implementing prediction + stalling
	overview
	pipeline registers during stall
	bubbling on jump misprediction
	signals for jXX squash
	bubbling on ret
	signals for ret/stall
	ret stall in HCL
	PC update with jmp/etc.

	overall CPU
	caching
	memory hierarchy intro
	locality
	direct mapped caches

	backup slides
	PC update logic [rearranging]
	repeat same logic
	timing exericse

