

last time (1)

replacement policies
least recently used (LRU) — best for locality assumption
approximations of LRU — more practical with > 2 ways
first-in, first-out; random — much easier to implement, not that much
worse

miss types:

compulsory/cold: first access / conflict: fixed with more associativity /
capacity: just not big enough

last time (2)

write-allocate versus write-no-allocate
behavior if writing to not-yet-cached value
write-allocate: add to cache
write-no-allocate: don’t add to cache

write-through versus write-back

behavior if writing to value to be stored in cache

if write-through, send writes immediately to next level

if write-back, mark as dirty in cache, send to next level when evicted
from cache

homework note
lab this week: cachelab (exercies)

homework: pipeline sim
instruction trace: list of instructions run 4+ src, dest, etc. as CSV file
python-based "simulator” that counts cycles based on our processor
design
assignment: make some modifications

exercise (1)

2-way set associative, LRU, write-allocate, writeback

index |valid| tag | value |dirty||valid] tag | value |dirty||LRU

[6x30] [6x40]
0 1 |001100|memioxs1]] © 1 |010000 memfoxarlk 1 0

*

mem[0Ox62] mem[0x32]
l l OllOOO mem[0x63] 0 l OOllOO mem[0x33]

*

1 1

>*

for each of the following accesses, performed alone, would it require
(a) reading a value from memory (or next level of cache) and (b)
writing a value to the memory (or next level of cache)?

writing 1 byte to 0x33

reading 1 byte from 0x52

reading 1 byte from 0x50

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index

0

1

valid| tag | value |dirty||valid] tag | value |dirty| |LRU
0x30 0x40]*
1 |oo1100[mmi3l o 1 [010000|mntoraste| 1 0
[0x62] [0x32] *
1 |011000|menfoxes] © 1 |oo1100|mmieca:] Y0 || 1

writing 1 byte to 0x33: (set 1, offset 1) no read or write

reading 1 byte from 0x52:

reading 1 byte from 0x50:

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index |valid| tag | value |dirty |valid| tag | value |dirty [LRU
0x30 0x40]*
0 1 |001100[mmiocel © 1 [010000|mntoraste| 1 0
0x62 [0x50
1 1 |011000[mniores] © 1 |oo1100| et] ©1 || 1

writing 1 byte to 0x33: (set 1, offset 1) no read or write

reading 1 byte from 0x52: (set 1, offset 0) write back 0x32-0x33;
read 0x52-0x53

reading 1 byte from 0x50:

exercise (1, solution)

2-way set associative, LRU, write-allocate, writeback

index |valid| tag | value |dirty||valid] tag | value |dirty| LRU

mem[0x30] mem[0Ox40] x

O l 00110@ mem[0Ox31] 0 l 0100@@ mem[0Ox41]* l O
0x62 0x32]*
1 1 [011000[mmiores) © 1 [001100|menionsats| 1 1

writing 1 byte to 0x33: (set 1, offset 1) no read or write

reading 1 byte from 0x52: (set 1, offset 0) write back 0x32-0x33;
read 0x52-0x53

reading 1 byte from 0x50: (set 0, offset 0) replace 0x30-0x31 (no
write back); read 0x50-0x51

exercise (2)

2-way set associative, LRU, write-no-allocate, write-through

index |valid| tag | value ||valid| tag | value ||[LRU

mem[0x30] mem[0x40]
O l OOllOO mem[0Ox31] l 910000 mem[0Ox41] 0

mem[0Ox62] mem[0x32]
l l OllOOO mem[0Ox63] l OOllOO mem[0x33] l

for each of the following accesses, performed alone, would it require
(a) reading a value from memory and (b) writing a value to the
memory?

writing 1 byte to 0x33

reading 1 byte from 0x52

reading 1 byte from 0x50

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index |valid| tag | value ||valid| tag | value |[LRU

mem[0x30] mem[0x40]

O l @0110@ mem[0Ox31] l @l@@@@ mem[0Ox41] 0
mem[0Ox62] mem[0x32]
1 1 |o11000[mni>¢2l 1 |oo1100fmmiocal| 10

writing 1 byte to 0x33: (set 1, offset 1) write-through 0x33
modification

reading 1 byte from 0x52:
reading 1 byte from 0x50:

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index |valid| tag | value ||valid| tag | value |[LRU
[6x50] [6x40]
0 1 |oo1100femioen]l 1 |o10000[mmioal| 01
0x62 [6x52]
1 1 |o11000[mni>¢2l 1 |oo1100fen o] 10

writing 1 byte to 0x33: (set 1, offset 1) write-through 0x33
modification

reading 1 byte from 0x52: (set 1, offset 0) replace 0x32-0x33; read
0x52-0x53

reading 1 byte from 0x50:

exercise (2, solution)

2-way set associative, LRU, write-no-allocate, write-through

index |valid| tag | value ||valid| tag | value ||[LRU

mem[0x30] mem[0x40]
O l 0011@0 mem[0Ox31] l 010000 mem[0Ox41] 0

mem[0Ox62] mem[0x32]
l l OllOOO mem[0Ox63] l OOllOO mem[0x33] l

writing 1 byte to 0x33: (set 1, offset 1) write-through 0x33
modification

reading 1 byte from 0x52: (set 1, offset 0) replace 0x32-0x33; read
0x52-0x53

reading 1 byte from 0x50: (set 0, offset 0) replace 0x30-0x31; read
0x50-0x51

10

fast writes

write 10
to OxABCD —wate buffer
| - {OXABCD: 10}
- 0x1234: 20’
CPU write 20 Cache
to Ox1234

RAM

memory can be much slower

write appears to complete immediately when placed in buffer

11

cache hierarchies
my desktop

4x L1 data cache per core
32KB, 8-way; write-back; 64B block

4x L1 instruction cache per core
32KB, 8-way; write-back; 64B block

4x L2 unified cache per core
256KB; 4-way; write-back; 64B block

1x L3 cache shared between all cores
8MB; 16-way; write-back; 64B block

13 caches totall

12

cache hierarchies
my desktop

4x L1 data cache per core
32KB, 8-way; write-back; 64B block

4x L1 instruction cache per core
32KB, 8-way; write-back; 64B block

4x L2 unified cache per core
256KB; 4-way; write-back; 64B block

1x L3 cache shared between all cores
8MB; 16-way; write-back; 64B block

13 caches totall

if something modified in one cache, how do others know?
problem called cache coherency

12

average memory access time

AMAT = hit time + miss penalty x miss rate
or AMAT = hit time X hit rate 4+ miss time X miss rate

effective speed of memory

13

AMAT example

suppose cache has 10 cycle hit time

80% hit rate

100 cycle miss penalty

14

AMAT example

suppose cache has 10 cycle hit time
80% hit rate

100 cycle miss penalty

AMAT = hit time + miss rate X miss penalty
AMAT = 10 cycles + (100% - 80%) x 100 cycles = 30 cycles

14

exercise: AMAT and multi-level caches

suppose we have L1 cache with
3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time

assume when there's an cache miss, the next level access starts
after the hit time
e.g. an access that misses in L1 and hits in L2 will take 1043 cycles

what is the average memory access time for the L1 cache?

15

exercise: AMAT and multi-level caches

suppose we have L1 cache with
3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time

assume when there's an cache miss, the next level access starts
after the hit time
e.g. an access that misses in L1 and hits in L2 will take 1043 cycles

what is the average memory access time for the L1 cache?
340.1-(10+0.2-100) = 6 cycles
15

exercise: AMAT and multi-level caches

suppose we have L1 cache with
3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time

assume when there's an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 1043 cycles

what is the average memory access time for the L1 cache?
340.1-(10+0.2-100) = 6 cycles
L1 miss penalty is 10 + 0.2 - 100 = 30 cycles 15

making any cache look bad

1.

A

access enough blocks, to fill the cache

access an additional block, replacing something
access last block replaced

access last block replaced

access last block replaced

but — typical real programs have locality

16

cache optimizations

(assuming typical locality...)
miss rate hit time miss penalty

increase cache size better worse —
increase associativity better worse worse?
increase block size depends worse worse
add secondary cache — — better
write-allocate better — 7
writeback — — 7

LRU replacement better 7 worse?
prefetching better — —

prefetching = guess what program will use, access in advance

average time = hit time 4 miss rate X miss penalty

cache optimizations by miss type

(assuming other listed parameters remain constant)

increase cache size
increase associativity
increase block size

LRU replacement
prefetching

capacity conflict compulsory
fewer misses fewer misses —

— fewer misses —

more misses? more misses? fewer misses

— fewer misses —
— — fewer misses

18

cache accesses and C code (1)

int scaleFactor;

int scaleByFactor (int value) {
return value * scaleFactor;
}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?

19

cache accesses and C code (1)

int scaleFactor;

int scaleByFactor (int value) {
return value * scaleFactor;
}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?
4-byte read of scaleFactor
8-byte read of return address

19

possible scaleFactor use

for (int 1

= 0; 1 < size; ++i) {
array[i] =

scaleByFactor(array[i]);

}

20

misses and code (2)

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret
suppose each time this is called in the loop:

return address located at address Ox7ffffffe43b8
scaleFactor located at address Ox6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
| return address | scaleFactor

tag
index
offset

21

misses and code (2)

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret
suppose each time this is called in the loop:

return address located at address Ox7ffffffe43b8
scaleFactor located at address Ox6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
| return address | scaleFactor

tag OxfFfffffc Oxd7
index | 0x10e 0x10e
offset | 0x38 0x20

21

misses and code (2)

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret
suppose each time this is called in the loop:

return address located at address Ox7ffffffe43b8
scaleFactor located at address Ox6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
| return address | scaleFactor

tag OxfFfffffc Oxd7
index | 0x10e 0x10e
offset | 0x38 0x20

21

conflict miss coincidences?

obviously | set that up to have the same index
have to use exactly the right amount of stack space...

but gives one possible reason for conflict misses:

bad luck giving the same index for unrelated values

more direct reason: values related by power of two
some examples later, probably

22

C and cache misses (warmup 1)

int array[4];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1l];
even_sum += array[2];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?

23

some possiblities

array[0]

array[1]

array[2]

array[3]

Q1: how do cache blocks correspond to array elements?

not enough information provided!

24

some possiblities

one cache block

array[0]larray[1]

array[2]larray[3]

if array[0] starts at beginning of a cache block...
array split across two cache blocks

memory access

cache contents afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

read array[1] (hit)

{array[0], array[1]}

read array[2] (miss)

{array[2], array[3]}

read array[3] (hit)

{array[2], array[3]}

25

some possiblities

one cacC

he block

*x%x%% larray[0@]larray[1]

array[2]larray[3]| ++++

if array[0] starts right in the middle of a cache block

array split across three cache

blocks

memory access

cache contents afterwards

(empty)

read array[0] (miss)

{**x%, array[0]}

read array[1] (miss)

{array[1l], array[2]}

read array[2] (hit)

{array[1l], array[2]}

read array[3] (miss)

{array[3], ++++}

26

some possiblities

one cache block

xxx*x larfray[0]|larray[l]lanfray[2]larray[3]| p+++

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

memory access

cache contents afterwards

(empty)

read array[0] byte 0 (miss)

{ *¥***, array[0] byte 0 }

read array[0] byte 1-3 (miss)

{ array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit)

{ array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit)

{ array[0] byte 1-3, array[2], array[3] byte O }

read array[2] byte 1-3 (miss)

{part of array[2], array[3], ++++}

read array[3] (hit)

{part of array[2], array[3], ++++}

27

aside: alignment

compilers and malloc/new implementations usually try align values

align = make address be multiple of something

most important reason: don't cross cache block boundaries

28

C and cache misses (warmup 2)

int array[4];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];

even_sum += array[2];

odd_sum += array[1l];

odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do

anything funny).
Assume array[0] at beginning of cache block.

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?

29

C and cache misses (warmup 3)
int array[8];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];

odd_sum += array[1];

even_sum += array[2];

odd_sum += array[3];

even_sum += array[4];

odd_sum += array[5];

even_sum += array[6];

odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).
Assume array[0] at beginning of cache block.

How many data cache misses on a 2-set direct-mapped cache with
8B blocks? 31

exercise solution

one cache block
(index 0)

array[0]

array[1]

array[2]

array[3]

array[4]

array[5]

arra’ .-

33

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1)

(index 0)

larray [0]

array[l]larray[zj

array [3]larray [4]

array[5]

arra’ .-

33

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1)

(index 0)

Iarray [0]

array[l]larray[zj

array [3]Iarray [4]larray[5]

arra’ .-

memory access

set 0 afterwards

set 1 afterwards

— (empty) (empty)
read array[0] (miss) {array[0], array[1]} (empty)
read array[1] (hit) {array[0], array[1]} (empty)

read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

33

exercise solution
one cache block one cache block one cache block one cache block
(index 1) (index 0) (index 1) (index 0)

i i] i T i]
observation: what happens in set 0 doesn’t affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

memory access set 0 afterwards set 1 afterwards

— (empty) (empty)

read array[0] (miss) {array[0], array[1]} (empty)

read array[1] (hit) {array[0], array[1]} (empty)

read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[3] (hit) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[5] (hit) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[7] (hit) {array[4], array[5]} {array[6], array[7]}

arra’ .-

exercise solution

one cache block one cache block one cache block one cache block
(index 1)

(index 1)

(index 0)

(index 0)

T | T

I

observation: what happens in set 0 doesn't affect set 1
when evaluating set 0 accesses,
can ignore non-set 0 accesses/content

arra’ .-

memory access

set 0 afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

read array[1] (hit)

{array[0], array[1]}

read array[4] (miss)

{array[4], array[5]}

read array[5] (hit)

{array[4], array[5]}

34

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0) (index 1)

(index 0)

larray [0]|array [1]larray [2]

array [3]larray [4]

array[5]

arra’ .-

memory access

set 0 afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

read array[1] (hit)

{array[0], array[1]}

read array[4] (miss)

{array[4], array[5]}

read array[5] (hit)

{array[4], array[5]}

34

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1) (index 0)

larray [0]

array[l]larray[zj

array [3]larray [4]larray[5]

arra’ .-

memory access

read array[2] (miss)

read array[3] (hit)

read array[6] (miss)

read array[7] (hit)

set 1 afterwards

(empty)

{array[2], array[3]}

{array[2], array[3]}

{array[6], array[7]}

{array[6], array[7]}

34

C and cache misses (warmup 4)

int array[8];

int even_sum = 0, odd_sum = 0;
even_sum += array[0];

even_sum += array[2];

even_sum += arrayl[4];

even_sum += arrayl[6];

odd_sum += array[1];

odd_sum += array[3];

odd_sum += array[5];

odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2-set direct-mapped cache with
8B blocks?

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1)

(index 0)

Iarray [0]

array[l]larray[zj

array [3]Iarray [4]larray[5]

arra’ .-

memory access

set 0 afterwards

set 1 afterwards

— (empty) (empty)

read array[0] (miss) {array[0], array[1]} (empty)

read array[2] (miss) {array[0], array[1]} {array[2], array[3]}
read array[4] (miss) {array[4], array[5]} {array[2], array[3]}
read array[6] (miss) {array[4], array[5]} {array[6], array[7]}
read array[1] (miss) {array[0], array[1]} {array[6], array[7]}
read array[3] (miss) {array[0], array[1]} {array[2], array[3]}
read array[5] (miss) {array[4], array[5]} {array[2], array[3]}
read array[7] (miss) {array[4], array[5]} {array[6], array[7]}

37

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0) (index 1)

(index 0)

larray [0]|array [1]larray [2]

array [3]larray [4]

array[5]

arra’ .-

memory access

set 0 afterwards

(empty)

read array[0] (miss)

{array[0], array[1]}

’read array[4] (miss)

|{array[4], array[5]}

’read array[1] (miss)

l{array[O], array[1]}

’read array[5] (miss)

|{array[4], array[5]}

37

exercise solution

one cache block one cache block one cache block one cache block

(index 1)

(index 0)

(index 1) (index 0)

larray [0]

array[l]larray[zj

array [3]larray [4]larray[5]

arra’ .-

memory access

’read array[2] (miss)

’read array[6] (miss)

’read array[3] (miss)

’read array[7] (miss)

set 1 afterwards

(empty)

’{array[2], array[3]}

’{array[6], array[7]}

’{array[z], array[3]}

’{array[G], array[7]1}

37

backup slides

38

AMAT exercise (1)
90% cache hit rate

hit time is 2 cycles

30 cycle miss penalty

what is the average memory access time?

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles

how much do we have to increase the hit rate for this to not
increase AMAT?

39

AMAT exercise (1)

90% cache hit rate

hit time is 2 cycles

30 cycle miss penalty

what is the average memory access time?

5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles

how much do we have to increase the hit rate for this to not
increase AMAT?

39

AMAT exercise (1)

90% cache hit rate

hit time is 2 cycles

30 cycle miss penalty

what is the average memory access time?

5 cycles

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles

how much do we have to increase the hit rate for this to not
increase AMAT?

miss rate of 2/30 — approx 93% hit rate

39

	last time
	exercise: write/replacement policies
	fast writes: write buffers
	cache hierarchies, coherency

	AMAT
	multi-level cache AMAT prep
	exercise: multi-level cache AMAT

	cache tradeoffs
	misses in C, and intuition behind conflicts
	array misses warmup
	backup slides
	exercise: AMAT (simple case)

