
optimization (finish) / exceptions

1

last time
removing redundant operations

example: compiler often can’t tell if function call produces same result
each time

vector/SIMD instructions
extra wide registers can hold small (fixed-size) array of values
instructions that perform operation (e.g. add) on several pairs of values
typical implementation: extra wide ALU
typical implementation: extra wide data cache accesses

vector instrinsics

2

vector exercise (2)
long A[1024], B[1024];
...
for (int i = 0; i < 1024; i += 1)

for (int j = 0; j < 1024; j += 1)
A[i] += B[i] * B[j];

(casts omitted below to reduce clutter:)

for (int i = 0; i < 1024; i += 4) {
A_part = _mm256_loadu_si256(&A[i]);
Bi_part = _mm256_loadu_si256(&B[i]);
for (int j = 0; j < 1024; /* BLANK 1 */) {

Bj_part = _mm256_/* BLANK 2 */;
A_part = _mm256_add_epi64(A_part,

_mm256_mullo_epi64(Bi_part, Bj_part));
}
_mm256_storeu_si256(&A[i], A_part);

}

What goes in BLANK 1 and BLANK 2?
A. j += 1, loadu_si256(&B[j]) B. j += 4, loadu_si256(&B[j])
C. j += 1, set1_epi64(B[j]) D. j += 4, set1_epi64(B[j]) 3

vector exercise 2 explanation
for (int i = 0; i < 1024; i += 1)

for (int j = 0; j < 1024; j += 1)
A[i] += B[i] * B[j];

/* -- transformed into -- */
for (int i = 0; i < 1024; i += 4)

for (int j = 0; j < 1024; j += 1) {
A[i+0] += B[i+0] * B[j];
A[i+1] += B[i+1] * B[j];
A[i+2] += B[i+2] * B[j];
A[i+3] += B[i+3] * B[j];

}

/* not the much harder to vectorize: */
for (int i = 0; i < 1024; i += 1)

for (int j = 0; j < 1024; j += 4) {
A[i] += B[i] * B[j+0];
A[i] += B[i] * B[j+1];
A[i] += B[i] * B[j+2];
A[i] += B[i] * B[j+3];

} 5

other vector instructions features
more flexible vector instruction features:

invented in the 1990s
often present in GPUs and being rediscovered by modern ISAs

reasonable conditional handling

better variable-length vectors

ability to load/store non-contiguous values

some of these features in AVX2/AVX512

7

alternate vector interfaces
intrinsics functions/assembly aren’t the only way to write vector
code

e.g. GCC vector extensions: more like normal C code
types for each kind of vector
write + instead of _mm_add_epi32

e.g. CUDA (GPUs): looks like writing multithreaded code,
but each thread is vector “lane”

8

optimizing real programs
ask your compiler to try first

spend effort where it matters

e.g. 90% of program time spent reading files, but optimize
computation?

e.g. 90% of program time spent in routine A, but optimize B?

9

profilers
first step — tool to determine where you spend time

tools exist to do this for programs

example on Linux: perf

10

example

11

an infinite loop
int main(void) {

while (1) {
/* waste CPU time */

}
}
If I run this on a shared department machine, can you still use it?
…if the machine only has one core?

13

timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

14

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

15

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

16

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

17

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

17

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

17

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

18

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

18

OS and time multiplexing
starts running instead of normal program

mechanism for this: exceptions (later)

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

19

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

20

context switch pseudocode
context_switch(last, next):
copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

21

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

22

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

23

memory protection
reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or program might crash (depending on …)
F. 99 or program might crash (depending on …)
G. 42 or 99 or program might crash (depending on …)
H. something else

24

memory protection
reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is …
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or program might crash (depending on …)
F. 99 or program might crash (depending on …)
G. 42 or 99 or program might crash (depending on …)
H. something else 24

memory protection
reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or program might crash (depending on …)
F. 99 or program might crash (depending on …)
G. 42 or 99 or program might crash (depending on …)
H. something else

25

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

26

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

27

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

28

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

29

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

30

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

31

The Process
process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

32

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

33

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

33

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

34

timer interrupt
(conceptually) external timer device

(usually on same chip as processor)

OS configures before starting program

sends signal to CPU after a fixed interval

35

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

36

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

37

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

38

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

39

exception implementation: notes
I/textbook describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

40

locating exception handlers

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

41

running the exception handler
hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

42

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

43

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

43

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

43

added to CPU for exceptions
new instruction: set exception table base

new logic: jump based on exception table
may need to cancel partially completed instructions before jumping

new logic: save the old PC (and maybe more)
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

43

exception handler structure
1. save process’s state somewhere

2. do work to handle exception

3. restore a process’s state (maybe a different one)

4. jump back to program
handle_timer_interrupt:
mov_from_saved_pc save_pc_loc
movq %rax, save_rax_loc
... // choose new process to run here
movq new_rax_loc, %rax
mov_to_saved_pc new_pc
return_from_exception

44

exceptions and time slicing
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

exception table lookup

timer interrupt

handle_timer_interrupt:
...
...
set_address_space ssh_address_space
mov_to_saved_pc saved_ssh_pc
return_from_exception

45

defeating time slices?
my_exception_table:

...
my_handle_timer_interrupt:

// HA! Keep running me!
return_from_exception

main:
set_exception_table_base my_exception_table

loop:
jmp loop

46

defeating time slices?
wrote a program that tries to set the exception table:
my_exception_table:

...

main:
// "Load Interrupt
// Descriptor Table"
// x86 instruction to set exception table
lidt my_exception_table
ret

result: Segmentation fault (exception!)

47

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

48

privileged instructions
can’t let any program run some instructions

allows machines to be shared between users (e.g. lab servers)

examples:
set exception table
set address space
talk to I/O device (hard drive, keyboard, display, …)
…

processor has two modes:
kernel mode — privileged instructions work
user mode — privileged instructions cause exception instead

49

kernel mode
extra one-bit register: “are we in kernel mode”

exceptions enter kernel mode

return from exception instruction leaves kernel mode

50

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

51

what about editing exception table?

52

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

53

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

54

protection fault
when program tries to access memory it doesn’t own

e.g. trying to write to OS address

when program tries to do other things that are not allowed

e.g. accessing I/O devices directly

e.g. changing exception table base register

OS gets control — can crash the program
or more interesting things

55

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

56

which requires kernel mode?
which operations are likely to fail (trigger an exception to run the
OS instead) if attempted in user mode?

A. reading data on disk by running special instructions that
communicate with the hard disk device

B. changing a program’s address space to allocate it more memory

C. returning from a standard library function

D. incrementing the stack pointer

57

kernel services
allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

58

Linux x86-64 system calls
special instruction: syscall

triggers trap (deliberate exception)

59

Linux syscall calling convention
before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls

60

Linux x86-64 hello world
.globl _start
.data
hello_str: .asciz "Hello, World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

61

approx. system call handler
sys_call_table:

.quad handle_read_syscall

.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

62

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

63

system call wrappers
can’t write C code to generate syscall instruction

solution: call “wrapper” function written in assembly

64

which of these require exceptions? context
switches?
A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

65

a note on terminology (1)
real world: inconsistent terms for exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
… and more

66

a note on terminology (2)
we use the term “kernel mode”

some additional terms:
supervisor mode
privileged mode
ring 0

some systems have multiple levels of privilege
different sets of priviliged operations work

67

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs

instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

68

backup slides

69

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

70

backup slides

71

	last time
	vector instructions
	other vector instr. features
	interfaces other than intrinisics

	profilers
	exceptions
	timing doing nothing
	the context switch
	preview: memory protection
	exercise: expected behavior?
	address spaces

	preview: the process
	exception types: sync v async
	exception types: detailed
	hardware for exceptions
	exception handlers
	privileged instructions
	exercise

	system calls
	which exceptions?
	exception terminology note
	and OOO

	backup slides
	key-in timeline

	backup slides

