
1

last time (1)
finish vector instructions

additional hardware support can help with conditionals, loading/storing
non-contiguous values
other vector interfaces exist

profilers: optimize what matters

process idea:
thread: illusion of dedicated core (via time multiplexing)
address space: illusion of dedicated memory (via address
translation/virtual memory)

2

last time (2)
contexts and context switches

(hardware) exceptions: processor gives OS control
asynchronous: on external events (timer, IO, etc.)
synchronous: from program events (system call, invalid instruction,
out-of-bounds access)

dispatching exceptions: exception tables

3

exceptions and time slicing
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

exception table lookup

timer interrupt

handle_timer_interrupt:
...
...
set_address_space ssh_address_space
mov_to_saved_pc saved_ssh_pc
return_from_exception

7

defeating time slices?
my_exception_table:

...
my_handle_timer_interrupt:

// HA! Keep running me!
return_from_exception

main:
set_exception_table_base my_exception_table

loop:
jmp loop

8

defeating time slices?
wrote a program that tries to set the exception table:
my_exception_table:

...

main:
// "Load Interrupt
// Descriptor Table"
// x86 instruction to set exception table
lidt my_exception_table
ret

result: Segmentation fault (exception!)

9

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

10

privileged instructions
can’t let any program run some instructions

allows machines to be shared between users (e.g. lab servers)

examples:
set exception table
set address space
talk to I/O device (hard drive, keyboard, display, …)
…

processor has two modes:
kernel mode — privileged instructions work
user mode — privileged instructions cause exception instead

11

kernel mode
extra one-bit register: “are we in kernel mode”

exceptions enter kernel mode

return from exception instruction leaves kernel mode

12

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

13

what about editing exception table?

14

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

15

address space
programs have illusion of own memory

called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

16

protection fault
when program tries to access memory it doesn’t own

e.g. trying to write to OS address

when program tries to do other things that are not allowed

e.g. accessing I/O devices directly

e.g. changing exception table base register

OS gets control — can crash the program
or more interesting things

17

types of exceptions
interrupts — externally-triggered

timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

aborts — hardware is broken

traps — intentionally triggered exceptions
system calls — ask OS to do something

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero
invalid instruction

asynchronous
not triggered by
running program

synchronous
triggered by
current program

18

which requires kernel mode?
which operations are likely to fail (trigger an exception to run the
OS instead) if attempted in user mode?

A. reading data on disk by running special instructions that
communicate with the hard disk device

B. changing a program’s address space to allocate it more memory

C. returning from a standard library function

D. incrementing the stack pointer

19

kernel services
allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

20

Linux x86-64 system calls
special instruction: syscall

triggers trap (deliberate exception)

21

Linux syscall calling convention
before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls

22

Linux x86-64 hello world
.globl _start
.data
hello_str: .asciz "Hello, World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

23

approx. system call handler
sys_call_table:

.quad handle_read_syscall

.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

24

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

25

system call wrappers
can’t write C code to generate syscall instruction

solution: call “wrapper” function written in assembly

26

which of these require exceptions? context
switches?
A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

27

a note on terminology (1)
real world: inconsistent terms for exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
… and more

28

a note on terminology (2)
we use the term “kernel mode”

some additional terms:
supervisor mode
privileged mode
ring 0

some systems have multiple levels of privilege
different sets of priviliged operations work

29

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

30

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

31

address spaces
illuision of dedicated memory

Process A
addresses

Process B
addresses

mapping
(set by OS)

mapping
(set by OS)

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory

trigger exception
= kernel-mode only

chose one during context switch

31

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

32

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

32

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

32

address translation

Process A
addresses
“virtual”

every address accessed
instructions and data

mapping
(set by OS)

stored in processor?
format?

Process A code
Process B code
Process A data
Process B data

OS data
…

real memory
“physical”

program addresses are ‘virtual’
real addresses are ‘physical’

can be different sizes!

32

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

33

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

33

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

33

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

33

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

33

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

34

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

34

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

34

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

34

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!

34

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

35

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

35

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

35

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

35

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

35

toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

35

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

36

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

36

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

36

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

36

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

37

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

37

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

37

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

37

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

37

kernel-mode only

virtual
page # valid? physical page # kernel

only?
00 1 010 (2, code) 0
01 1 111 (7, data) 0
10 1 000 (0, stack) 0
11 1 001 (1, OS) 1

01 1101 0010 — address from CPU

trigger exception if 0?

trigger exception
if 1 and in user mode?

111 1101 0010

to cache

37

backup slides

38

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs

instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21
RCX X2 X32
RBX X48
RDX X37
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

exceptions and OOO (one strategy)

Fetch Decode Rename
Instr

Queue

execute unit 1
execute unit 2
execute unit 3
execute unit 4
…

Reorder
Buffer

arch.
reg

phys.
reg

RAX X15
RCX X17
RBX X13
RBX X07
… …

for new instrs
X19
X23…

free regs instr
num. PC dest. reg done? except?
… … … … …
17 0x1244 RCX / X32 X
18 0x1248 RDX / X34 X
19 0x1249 RAX / X38 X
20 0x1254 R8 / X05 X X
21 0x1260 R8 / X06
… … … … …

new instrs added

done instrs
committed in order

arch.
reg

phys.
reg

RAX X21 X38
RCX X2 X32
RBX X48
RDX X37 X34
… …

for complete instrs

instr 20 has exception
first, recorded in reorder-buffer

wait for earlier instructions to finish
and update registers for them

then use completed registers
as registers for new instructions
+ record PC from reorder buffer

+ jump to exception handler

arch.
reg

phys.
reg

RAX X38
RCX X32
RBX X48
RBX X34
… …

for new instrs

variation: could store architectual reg. values
instead of mapping for completed instrs.

(and copy values instead of mapping on exception)

arch.
reg value
RAX 0x12343
RCX 0x234543
RBX 0x56782
RDX 0xF83A4
… …

stopping instructions in progress for exception
similar to how ‘squashing’ mispredicted instructions

39

	last time
	privileged instructions
	exercise

	system calls
	which exceptions?
	exception terminology note

	virtual memory
	address spaces
	address translation overview
	simple paging with four pages
	switching address spaces
	…kernel-only

	backup slides
	and OOO

