\qquad

CS 3330 Exam 1 - Fall 2015

Name: Computing ID: \qquad
Letters go in the boxes unless otherwise specified (e.g., for C 8 write " C " not " 8 ").
Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:

- little-endian 64-bit architecture
- \%rsp points to the most recently pushed value, not to the next unused stack address.
- questions are single-selection

Mark clarifications: If you need to clarify an answer, do so, and also add a $*$ to the top right corner of your answer box.

Question 1: Labels are part of assembly, but not part of the underlying ISA the assembly represents. This is because
A Labels are turned into addresses by the assembler or linker
B Labels are used by a different part of the hardware, not the ISA
C Labels are like comments; they have no semantic meaning
D None of the above
Answer:

Information for questions 2-4

Consider a six-bit IEEE-style floating-point number with 1 sign, 2 exponent, and 3 fraction bits. Assume the bias is 1. Answers are written in binary.

Question 2: (see above) What is the largest denormalized value?
A 1110
B 11110
C 111
D 0.0111
E 0.01111
F 0.111
G 1111
H 0.1111

Answer:

\qquad

Question 3: (see above) How many of the 2^{6} bit patters in this format are NaNs?
A 2,3, or 4
B 0
C 1
D 5,6 , or 7
E 8
F between 9 and 15
G 32
H between 17 and 31
I 16

Question 4: (see above) What is the smallest non-negative normalized value?
A 1
B 0.0001
Answer:
C 0.1
D 0
E 100
F 10
G 0.001

Answer:

Information for questions 5-7
Consider adding a new mmmovq instruction to Y86-64 that moves from memory to memory. Assume we use the same operand notation for mmmovq that we use for other operations.

Question 5: (see above) How many program registers will mmmovq need to access?
A 1
B 0
C 2
D more than 2

Answer:
\qquad

Question 6: (see above) The data memory functionality we use for simulating Y86-64 has one output (rvalM, the value retrieved from memory when reading) and four inputs:

- dread, a bit meaning "I want to read memory"
- dwrite, a bit meaning "I want to write memory"
- addr, 64 bits meaning "the address of memory to access"
- wvalM, 64 bits meaning "the value to put into memory when writing"

Which of the following is true of the requirements for adding mmmovq?
A We'd need one or more new inputs and one or more new outputs
B The existing inputs and outputs would be sufficient
C We'd need one or more new outputs, but the existing inputs would be sufficient
D We'd need one or more new inputs, but the existing outputs would be

Answer: sufficient

Question 7: (see above) How many bytes are needed to encode mmmovq? To avoid doublecoverage of the register counting question in this set, assume that it takes R bytes to encode the register(s) needed (e.g., for nop $R=0$, for irmovq and OPq $R=1$, etc).
A $10+R$
B $1+R$
C $9+R$
D $2+R$
E none of the above
Answer:

Information for questions 8-11

Consider the C statement $* \mathrm{x}=\mathrm{y}+* * \mathrm{z}$;. Assume that the compiler chooses to store x, y, and z each in a different program register, and that y and z are already in their registers.

Question 8: (see above) How many Y86-64 rmmovqs are needed for that statement?
A 0
B 3
C 4
D 2
E 1

Question 9: (see above) How many Y86-64 OPqs are needed for that statement?
A 0
B 2
C 3
D 4
E 1

Answer:

\qquad

Question 10: (see above) How many Y86-64 mrmovqs are needed for that statement?
A 0
B 3
C 4
D 1
E 2

Answer:
\square

Question 11: (see above) How many Y86-64 rrmovqs are needed for that statement?
A 0
B 4
C 2
D 3
E 1
Answer:

Information for questions 12-17

Assume x and y are non-negative int values. For answers where one or both is the operand of a shift, assume it has a legal value for shifting with.

For each question, write a relational operator ($\langle,\langle=,==,!=\rangle=,,>$) in the box that will make the expression true for all values of x and y. Note that if $<$ is true, so is $<=$ and $!=$; in that case, write $<$. If none of the relational operators is true for all x and y, write none.

For example, if the question was x \qquad x | \sim x I'd answer > because x is non-negative and $\mathrm{x} \mid \sim \mathrm{x}$ is always -1 .

Question 12: (see above) ($\mathrm{x}<\mathrm{y}$) ? ($(\mathrm{x} \ll \mathrm{y})$ $(y \ll x)):((y \ll x) \quad(x \ll y)) \quad$ (assume the same relational operator has to go in both blanks)

Question 13: (see above) ($\mathrm{x} \& \mathrm{y}$) ___ ($\mathrm{x} \mid \mathrm{y}$)

Question 14: (see above) $(x+y) \quad$ _ $(x \ll y)$

Question 15: (see above) ($\mathrm{x}+\mathrm{y}$) \qquad $((x \wedge y)+((x \& y) \ll 1))$

Question 16: (see above) ($\mathrm{x} \wedge \mathrm{y}$) \qquad ($\mathrm{x}+\mathrm{y}$)

Answer:

Answer:

Answer:

Answer:
\qquad

Question 17: (see above) x ___ ($x+y$)

Answer:

Question 18: Suppose you have a system that does three tasks sequentially: task A takes 60% of the time, task B 30%, and task C 10%. Which of the following would give the largest speedup?
A Running A, B, and C all in parallel without changing their respective runtimes but with a 2% cost splitting and recombining the tasks
B Cutting all three tasks to $\frac{2}{3}$ of their current times
C Cutting B's time to $\frac{1}{10}$ of its current time
D Cutting A^{\prime} 's time to $\frac{1}{3}$ of its current time

Answer:

Information for questions 19-22

Consider the following stage summaries:

- Fetch interacts with instruction memory and computes the new PC
- Decode reads values from the register file
- Execute does any math not done in Fetch
- Memory interacts with data memory
- Writeback writes values to the register file
and the following subset of the Y86-64 operations: irmovq, rmmovq, mrmovq, OPq, jXX, call, ret, pushq, and popq. (This list does not include halt, nop, rrmovq, or cmovXX).

Question 19: (see above) How many operations from that list do need the memory stage but not the execute stage?
A 2 or 3
B 1
C 0
D more than 3

Answer:

Question 20: (see above) How many operations from that list do need the memory stage but not the writeback stage?

A 0
B more than 3
C 1
D 2 or 3
Answer:
\qquad

Question 21: (see above) Which of the following instructions (a) uses both execute and memory and (b) would work if the memory stage ran before the execute stage?

A rmmovq
B mrmovq
Answer:
C popq
D pushq
E two or more of the above \square
F none of the above

Question 22: (see above) How many operations from that list do not need the decode stage?
A 0

Answer:

Question 23: The following Y86-64 code leaves what value in \%rax?

```
irmovq $0x1234, %rbx
rmmovq %rbx, 0x100
irmovq $0x5678, %rbx
rmmovq %rbx, 0x108
mrmovq 0x104, %rax
```

Answers are shown in hex in 2-byte clusters for readability
A 0x0000 000000000000
B 0x0000 000056780000
C 0x0000 785600000000
D 0x0000 000034120000
E 0x0000 123400000000
F None of the above

Information for questions 24-28

In lab 2 we worked with three kinds of lists; repeating those definitions, suppose we have the following defined:

```
typedef struct node_t { TYPE value; node *next; } node;
typedef struct range_t { size_t length; TYPE *ptr; } range;
TYPE *sentinel_array;
node *linked_list;
range length_array;
```

\qquad

Question 24: (see above) On a 64-bit machine where sizeof (TYPE) is 4 and sizeof (size_t) is 8 , which requires the least memory for a 50 -element list?

```
A sentinel_array
B linked_list
C length_array
B linked_list
C length_array
```

Answer:
\square

Question 25: (see above) Assume TYPE is int. I have a list [2,1,5,0, 3, 3, 3, 0, 4, 4, 1,4] and want to "split on 0 " to get the three lists $[2,1,5],[3,3,3]$, and $[4,4,1,4]$. If I require the original list to remain untouched, which list type(s) can do that without any additional malloc calls?

Select all that apply by putting one or more letter in the box

```
A sentinel_array
B length_array
C linked_list
D none of the above
```

Answer:

Question 26: (see above) Assume TYPE is int. I have a list [2,1,5,0, 3,3,3,0, 4,4,1,4] and want to "split into chunks of 4 elements" to get three lists [2,1,5,0], [3,3,3,0], and [4,4,1,4]. If I am OK with losing the original list, which list type(s) can do that without any additional malloc calls?

Select all that apply by putting one or more letter in the box
A linked_list
B length_array
C sentinel_array
D none of the above

Answer:

Question 27: (see above) Assume TYPE is int. I have a list [2,1,5,0, $3,3,3,0,4,4,1,4]$ and want to "split on 0 " to get the three lists [2,1,5], [3,3,3], and [4,4,1,4]. If I am OK with losing the original list, which list type(s) can do that without any additional malloc calls?

Select all that apply by putting one or more letter in the box.
A sentinel_array
B linked_list
C length_array
D none of the above
Answer:

Question 28: (see above) In C, strings are implemented as a list of chars for which type of list?
A sentinel_array
Answer:
\qquad

Question 29: If x is a binary integer then $\sim x+1$ is the same as $-x$; this encoding is called "two's compliment." There is another encoding where $\sim x=-x$, called "one's compliment." One's compliment has two zeros (like floating-point does); assuming we still do binary addition normally, it also has which of the following other problems?
(Note: there is a simple tweak to addition that fixes this problem, but not one we will explore)
A $6+-3$ is not three

Answer:

Question 30: What is the minimal number of $j X X$ operations needed to assemble if (a) b = c; into Y86-64?
A 2
B 0
C 1
D 3

Answer:

Pledge:

On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

