$\qquad$

## CS 3330 Exam 1 - Fall 2016

Name: $\qquad$

## Computing ID:

$\qquad$
Letters go in the boxes unless otherwise specified (e.g., for C 8 write " C " not " 8 ").
Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:

- little-endian 64-bit architecture
- \%rsp points to the most recently pushed value, not to the next unused stack address.
- questions are single-selection unless identified as select-all

Variable Weight: point values per question are marked in square brackets.
Mark clarifications: If you need to clarify an answer, do so, and also add a $*$ to the top right corner of your answer box.

## Information for questions 1-2

Y86-64 has 12 icodes: halt, nop, rrmovq, irmovq, rmmovq, mrmovq, OPq, jXX, pushq, popq, call, and ret. The following questions should be answered with the number of those 12 that have the listed property. Valid answers range from 0 to 12 .

Question 1 [ 2 pt ]: (see above) How many set the condition codes?

Question 2 [ $2 \mathbf{~ p t}$ ]: (see above) How many perform math in the execute stage?
(The textbook said some instructions always add 0 to something (e.g., valE $=0+\mathrm{valC})$; don't include that $0+$ addition as "math" for this question.)

Question 3 [ 2 pt ]: The following are true of memory layout in x86-64 Linux. Which one is due to the x86-64 ISA?
A the stack grows towards smaller addresses
B the top of the address space is used by the OS
Answer:

C the bottom of the address space is unused
D the heap grows toward larger addresses
E executable code begins at address $0 \times 40000000$

| Answer: |
| :--- |
|  |

$\qquad$

## Information for questions 4-5

Consider the following Y86-64 assembly program and its corresponding encoding. (On the leftmost column is the memory address of each instruction, followed by its encoding, listed as a sequence of bytes in hexadecimal.)

Assume the program register r8 contains the value $0 x A$ before the given assembly is run.
0x000: 30 f0 0a 00000000000000 । irmovq label, \%rax
0x00a: 50 080000000000000000 | label: mrmovq $0(\% r 8)$, \%rax
Question 4 [2 pt]: (see above) What is the value of \%rax after the first instruction (the irmovq) executes?
A the machine will stop with the invalid address (STAT_ADR) status
B $0 x C$
C $0 \times 5008000000000000$ (ends with 12 zeroes)
D 0x0
E 0xA
F 0x850
G $0 x 5$

Question 5 [2 pt]: (see above) What is the value of \%rax after the second instruction (the mrmovq) executes?
A the machine will stop with the invalid address (STAT_ADR) status
B $0 \times 8$
C 0x30f00a0000000000 (ends with 10 zeroes)
D $0 \times 850$
E 0x30
F 0xA
G 0x0
H 0xaf030
I 0x5008000000000000 (ends with 12 zeroes)
Question 6 [2 pt]: Suppose that x is the signed char containing the value -33 ( 0 b 11011111 ) and unsigned char $\mathrm{y}=$ (unsigned char) x ; Which of the following are true?

## Select all that apply

A $\mathrm{x}==$ (int) x
B $\mathrm{x}=\mathrm{y}$
C (x >> 1) < x
D (y >> 1) < y
Answer:

## Information for questions 7-8

The following ask about wiring of the SEQ processor.
$\qquad$

Question 7 [2 pt]: (see above) The instruction memory has one input and one output. During a cycle in which we execute call instruction, the value of the input should be set to:

A the address of the call instruction
B the output of the data memory
C the immediate value (target address) contained within the call instruction
D the address of the instruction following the call instruction in memory
E the output of the ALU
Answer:

F none of the above
Question 8 [2 pt]: (see above) The program counter register has one input and one output. During a cycle in which we execute call instruction, the value of the input should be set to:
A the address of the call instruction
B the output of the data memory
Answer:
C the immediate value (target address) contained within the call instruction
D the output of the ALU
E the address of the instruction following the call instruction in memory
F none of the above

Question 9 [2 pt]: Choose the correct compilation of rax = (rbx ? rcx : rdx)

```
    andq %rbx, %rbx;
A jne p2;
            rrmovq %rdx, %rax;
    p2: rrmovq %rcx, %rax
            andq %rbx, %rbx;
            rrmovq %rdx, %rax;
B je p2;
            rrmovq %rcx, %rax
        p2:
            andq %rbx, %rbx;
C je p2;
    rrmovq %rdx, %rax;
    p2: rrmovq %rcx, %rax
            andq %rbx, %rbx;
            rrmovq %rdx, %rax;
D jne p2;
    rrmovq %rcx, %rax
    p2:
```

$\qquad$

Question 10 [2 pt]: If we extend Y86-64 to include a new instruction mrOPq which is like OPq except that it allows for a memory source (e.g., mrxorq $33(\% r 11), \% r 12)$, how long would its encoding be?

A 1 byte
B 2 bytes
C 10 bytes
D 9 bytes
E none of the above


Question 11 [2 pt]: What is $\log _{2}(32 G)$ ? Answer as a normal base-10 number.
"Memorizing powers of two became so important later in the semester. (I neglected to memorize them until I needed them later and I regret it.)" -a TA


## Information for questions 12-13

Recall that we use two condition code flags: SF (the sign flag) is 1 for a negative number and ZF (the zero flag) is 1 for the value zero.

Question 12 [2 pt]: (see above) After executing the Y86-64 assembly instruction xorq $\% \mathrm{rax}, \% \mathrm{rax}$, what are possible values for the condition code bits SF and ZF?

## Select all that apply.

A $\mathrm{ZF}=1, \mathrm{SF}=0$
B $\mathrm{ZF}=0, \mathrm{SF}=1$
C $\mathrm{ZF}=1, \mathrm{SF}=1$
D $\mathrm{ZF}=0, \mathrm{SF}=0$

| Answer: |
| :--- |
|  |

Question 13 [2 pt]: (see above) After executing the Y86-64 assembly instruction andq \%rax, \%rax, what are possible values for the condition code bits SF and ZF?
Select all that apply.
A $\mathrm{ZF}=1, \mathrm{SF}=0$
B $\mathrm{ZF}=0, \mathrm{SF}=1$
C $\mathrm{ZF}=0, \mathrm{SF}=0$
D $\mathrm{ZF}=1, \mathrm{SF}=1$

| Answer: |
| :--- |
|  |

## Information for questions 14-15

In lab you coded with three kinds of lists: sentinel-terminated arrays; length arrays (also called vectors or ranges); and linked lists.

Question 14 [2 pt]: (see above) Which requires the least new memory to be allocated to extend a 64 -element list to have a 65th element? Assume we use malloc to allocate any new memory needed.

A sentinel-terminated arrays
B linked lists
C length arrays (also called vectors or ranges)

| Answer: |
| :--- |
|  |

$\qquad$

Question 15 [2 pt]: (see above) Assume we have 8-byte pointers and list elements are 1-byte values. Which type of list uses the most memory?

A length arrays (also called vectors or ranges)
B sentinel-terminated arrays
C linked lists

Answer:

## Question 16 [2 pt]:



Consider the above circuit, which contains two registers and a ALU that only adds its operands. If register A and register B initially output 1, what value will register A output after 3 rising clock edges happen?

Question $17[3 \mathbf{p t}]:$ What are the possible return values of the following $C$ function?
int foo(int x) \{
int y ;
do \{

$$
y=x ;
$$

$\mathrm{x}=\mathrm{x} \gg 1$;
\} while ( x ! $=\mathrm{y}$ );
return x ;
\}

## Select all that apply.

A MAX_INT (the most positive possible int)
B a value not listed above

| Answer: |
| :--- |
|  |

E -1
F 1
$\qquad$

Question 18 [2 pt]: What does the following $C$ code return?

$$
\text { int } \mathrm{x}=2, \mathrm{y}=2 \text {; }
$$

if (x) goto qux;
x -= y;
qux: if (!x) goto plugh; y -= 1; if (y >= x) goto qux;
plugh: return ( 10 *x + y);

Answer:

Answer as either a normal base-10 number or with one of the words "error" (if it contains an error) or "loops" (if it runs forever).

Question 19 [2 pt]: Which of the following is more typical of RISC than CISC?
A addressing is simplified so that memory operands may appear in any instruction
B common tasks like pushing onto the stack are reduced to a single instruction
C all instructions are simplified to have the same encoded length
D all of the above
E none of the above

## Information for questions 20-20

Assume that x and y are 32-bit int-type variables in C. Assume that their initial values are positive (strictly greater than 0 ).

Question 20 [ 8 pt$]:$ (see above) Which of the following are guaranteed to be true?
Note: this will be graded like 8 true/false questions; answer by putting a check-mark in the true boxes and leaving the false ones blank.
Select all that apply

$\qquad$

Question 21 [2 pt]: Which of the following only occur on a rising clock edge? Select all that apply

A register file read
Answer:
B data memory write
C data memory read
D register file write

## Pledge:

On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

