
Computer Architecture Name:
Fall 2019
Final Exam
12/13/2019
Time Limit: 3 hours Computing ID

Instructions:

1. This exam contains 15 pages (including this cover page) and 26 questions.

2. You have three (3) hours to complete the examination. As a courtesy to your
classmates, we ask that you not leave during the last fifteen minutes.

3. Write your answers in this booklet. We scan this into TPEGS, so please try to avoid
writing on the backs of pages.

4. You may use a calculator. You may not share a calculator with anyone. If you didn’t
bring a calculator, you may use your phone, but you must put it on flight mode and
clear all visible notifications before the examination starts, and you must not open
any applications other than the calculator and a timer.

5. Please sign the below Honor Code statement.

I have neither given nor received aid on this exam.

Signature:

Computer Architecture Final Exam - Page 2 of 15 12/13/2019

1. For the following questions, consider the following C code:

int i = 0;

int j = 0;

do {

if (i % 4 != 0) goto after;

j += 1;

after:

i++

} while (i != 1000000);

Assume this compiles to assembly with two conditional jumps: one for the if statement
that jumps if the condition is true and one for the do-while loop which jumps if the
condition is true.

(a) (3 points) Suppose this code is run with a branch direction predictor based on a
table of two-bit saturating counters, where each of the two conditional branches use
different table entries. Complete the following table with predictions and outcomes
for the if statement branch when i is between 10001 and 10003:

i value prediction outcome

10001 taken
10002 not taken
10003 taken

(b) (3 points) Suppose this code is run with a branch direction predictor that:

• uses single global history register, which keeps track of whether the last K
branches were taken or not taken;

• uses the value of that history register to lookup a counter that determines
whether to predict the branch as taken or not taken

• updates the counter used for the prediction based on the actual outcome of the
branch

1. If the history register had three entries and indicated a pattern of TTTN, then
the best prediction for the above code would be?

© Taken

© Not-Taken

2. What is the minimum size K of the history register that will allow all branches
in the above code to be predicted correctly after the loop runs for several
hundred iterations (to give enough time to make sure the branch predictor’s
counters have appropriate values)?

Computer Architecture Final Exam - Page 3 of 15 12/13/2019

2. (3 points) Consider a branch predictor which combines the address of each branch with
a global branch history to lookup a two-bit saturating counter in a table, then uses this
counter to predict branches. Suppose this predictor uses a hash function that takes the
last bit of the PC and adds it to the number of taken branches in branch history register
that has a length of 2. If the state of the predictor is as shown below, what global history
would result in predictions that the branch is taken when the pc is 0xADD? Write your
answer using T to represent taken and N for not taken. Assume that adds are preformed
with wraparound.

0 11
1 00
2 10
3 01

3. (2 points) High quality branch predictors are useful because: (Mark all that apply)

© Predicting branches correctly (as opposed to incorrectly) reduces the number
of things that a processor need to fetch

© Predicting branches correctly (as opposed to incorrectly) results in faster pro-
grams

© Predicting branches correctly (as opposed to incorrectly) reduces the number
of instructions stored in main memory

© High quality branch predictors increase the amount of space available for com-
putation on a chip.

4. (3 points) Consider a system with:

• 32 bit virtual address

• 4KB pages

If the system will also have a 256KB cache with 64 byte blocks, what would the minimum
associativity of the cache needed for it to be a virtually-indexed, physically-tagged cache?
(That is, one where the cache is based on physical addresses, but the cache lookup and
TLB lookup can overlap.)

Computer Architecture Final Exam - Page 4 of 15 12/13/2019

5. (2 points) Which of the following is/are true about entries placed into the TLB (trans-
lation lookaside buffer)? (Mark all that apply)

© Only valid page table entries are placed into the TLB on TLB misses.

© The ISA will generally include an instruction that invalidates TLB entries

© The processor will update a TLB entry whenever the corresponding page table
entry is written to.

© The TLB helps translate physical addresses to virtual addresses

6. Consider a system with the following specifications:

• TLB has a 1 cycle hit time and a 99% hit rate

• The TLB miss penalty (page table lookup time) is 100 cycles

• The L1 cache has a hit time of 4 cycles and a hit rate 80%

• The miss penalty for L1 cache is 50 cycles

(a) (3 points) Assuming TLB and L1 cache accesses do not overlap, what is the average
memory access time for the system described above?

(b) (3 points) Suppose the TLB and L1 cache access can overlap, even though the
cache is based on physical addresses, and the L1 set index lookup takes 2 cycles,
and the rest of the L1 access (tag comparison and extracting the appropriate part
of the cache block) takes 2 cycles. What is the average memory access time then?

Computer Architecture Final Exam - Page 5 of 15 12/13/2019

7. (8 points) Use the memory layout below to answer the next two questions. The layout
below shows the partial contents of physical memory.

0x00-3 00 00 AA 00
0x04-7 44 55 66 77
0x08-B 00 DA 22 33
0x0C-F 00 11 00 CC
0x10-3 2A 11 22 33
0x14-7 3B 00 00 00
0x18-B 00 AD 21 30
0x1C-F 00 BA AD 31
0x20-3 D0 CA 23 32
0x24-7 00 AC 24 33
0x28-B 00 DC 25 34
0x2C-F 00 BC 26 35
0x30-3 00 00 27 36
0x34-7 00 00 00 00
0x38-B E7 11 28 33
0x3C-F 00 11 29 33

Assume the following:

• the base table register contains the value 0x0C (which is a physical address that is
in the middle of page)

• the page table are 16 bytes

• single level page tables

• physical address are 8 bits

• page table entries are 4 bytes.

• assume the system is running in user mode.

• the most significant 4 bits of first byte represent physical page number.

• the remain bits of the first byte are laid as follows [valid bit — kernel only mode
bit— read bit — global bit] where the valid bit is most significant

• the remain bits are unused.

What byte is stored at address virtual address 0x13? If reading this address would cause
an exception write “fault” in the answer box. If not enough information is provided
write unknown.

Computer Architecture Final Exam - Page 6 of 15 12/13/2019

8. (3 points) Holding all things the same but extending the example to 2-level page tables,
where page tables at each level are still 16 bytes. What byte is stored at virtual address
0xA2? If reading this address would cause exception write “fault” in the answer box. If
not enough information is provided write unknown.

9. (2 points) Which of the following are motivations for switching to multiple level page
tables from single level pages? Mark all that apply

© Multiple level paging allows us to reduce the amount of space required to store
a process’s page table entries.

© Multiple level paging allows for faster pagetable entry look ups

© Multiple level paging allows for larger virtual address spaces

© Multiple level page tables allow for faster memory reads and writes.

10. (3 points) Consider a system with:

• 6-level page tables

• 1KB page tables at each level

• 4 byte page table entries

How much page table space would be required to allow a process to access two distinct
pages, where the virtual addresses only differ in their most significant bit?

11. (2 points) Which of the following conditions would cause the OS to invalidate one or
more TLB entries? (Select all that apply.)

© A process’ page is evicted from DRAM

© A process loads one of its page into an empty DRAM

© The operating system triggers a context switch

© The program executes a system call that does require a context switch.

was meant to be ‘does not require’, but it was not written that way

Computer Architecture Final Exam - Page 7 of 15 12/13/2019

12. (2 points) What is/are the advantages of SIMD instructions (compared to non-SIMD
instructions)? Mark all that apply

© They allow the CPU to execute multiple instructions at once

© They allow data to be processed in parallel without adding much extra control
logic to a CPU

© They allow a CPU to add parallelism to existing programs

© They allow a CPU to take advantage of larger and/or multiple ALUs

© They allow a CPU to take advantage of a larger number of registers

13. (3 points) Consider a vector processor built from 3 execution units which can process
one vector element at a time:

• a load unit

• a alu unit

• a store unit

Assuming that each unit takes one cycle per operation, but multiple units can be used
within the same cycle. How many cycles does it take to execute the following instructions
(VR1 represents a vector register and A[0:7] represents elements 0 through 7 inclusive
of an array)? (Ignore the time require to fetch/decode/etc. the instructions.)

LOAD VR1 <- A[0:7]

ADD VR1 <- VR1, 2

STORE A[0:7] <- VR1

14. (3 points) Suppose instead we had a processor which had execution units that can pro-
cess a whole 8-element vector at a time, but where the ALU unit has a latency of 3
cycles? (The load and store units still have a latency of 1 cycle.)

Computer Architecture Final Exam - Page 8 of 15 12/13/2019

15. Consider the following C loops where A, B, and C are large arrays of integers that do not
overlap and N is a large, constant number.

/* loop A: */

for (int i = 0; i < N; ++i)

A[i] = A[i*2]

/* loop B: */

for (int i = 0; i < N; ++i)

A[i] = (B[i] + C[i]) * (B[i] - C[i]);

/* loop C: */

for (int i = 0; i < N; ++i)

if (B[i] > 10)

A[i] += B[i];

/* loop D: */

for (int i = 0; i < N; ++i)

A[i+1] = (A[i] + A[i+1]) / 2;

(a) (2 points) Which of these loops would be most straightforward/efficient to imple-
ment using SIMD instructions, assuming there is no support for masking or scat-
ter/gather loads and stores? (Write the letter in the box below.)

(b) (2 points) Some processors with SIMD instructions support masked store instruc-
tions, which act like a vector store instruction, but only store elements specified
by ‘mask’ array. Which of the loops above would benefit from these instructions?
(Write the letters for corresponding loops in the box below, separate letters by
commas)

Computer Architecture Final Exam - Page 9 of 15 12/13/2019

16. (2 points) Some exceptions are triggered deliberately by an application. What is likely
to be true about these exceptions? (Select all that apply.)

© The instruction triggering the exception contains the address of the exception
handler.

© If the application was running in user mode, the exception handler will also
run in user mode.

© The processor will save the value of the program counter before running the
exception handler.

© The values of the application’s registers can be read by the exception handler.

17. (2 points) When an operating system performs a context switch from application A to
application B; where is the value of the register %rax in application A will most likely
be saved?

© in the operating system’s memory

© on application A’s stack

© on application B’s stack

© in application A’s page table

© in the exception table

18. (2 points) An operating system can use page tables and exceptions to perform allocation
on demand, where it won’t allocate physical memory for a program until the program
tries to use it. In an operating system that implements this feature, what happens when
a program attempts to access memory that still needs to be allocated?

© The hardware will notice that the memory is marked as kernel-mode-only in
the page table and consequently update the page table and allocate it

© The operating system’s page fault handler will allocate the memory, update the
page table accordingly, and restart the program starting with the instruction
that tried to access the memory

© The operating system’s page fault handler will allocate the memory, update
the page table accordingly, and restart the program from the beginning of the
function that tried to access the memory

© The operating system’s page fault handler will allocate the memory, update
the page table accordingly, and restart the program from the instruction after
the instruction that tried to access the memory

© the compiler will have inserted a system call before the instruction that at-
tempts to access memory, and this system call will handle allocating the mem-
ory before the program actually attempts to use the memory

Computer Architecture Final Exam - Page 10 of 15 12/13/2019

19. (2 points) When running an infinite loop on a shared server, it will usually be the case
that the operating system will still occasionally switch to other programs, even if the
server only has one core. How can the operating system do this? (Select all that apply.)

© before starting the infinite loop program, the operating system can setup a
timer for the hardware to run operating system code that switches away to
another program

© the hardware will run operating system code when certain I/O devices like
keyboard signal the processor, even if they aren’t being used the currently
active program

© the hardware periodically swaps pages from DRAM to memory, so the infinite
loop will eventually experience a page fault, even if the operating system is
not otherwise run

© assuming an out-of-order processor, the program will eventually run out of free
physical registers, so the hardware will run the operating system to handle this
situation

20. Consider a system with:

• 64-bit physical addresses and caches that use physical addresses

• an 8-way 64KB L1 cache with a random replacement policy, a write-through, write-
no-allocate policy, 64 byte blocks, and a 4 cycle hit time

• a 4-way 2MB L2 cache with an LRU replacement policy, a write-back, write-allocate
policy, 64 byte blocks, and a 16 cycle hit time

• the miss penalty of the L2 cache is 50 cycles

(a) (3 points) If the L1 cache has a 90% hit rate and the L2 cache has a 80% hit rate,
what is the average memory access time of the L1 cache? (Assume each cache needs
their entire hit time to determine whether there is a hit or miss.)

(b) (2 points) Give an example of an address whose value would be stored in the same
set as address 0x123456, but not as part of the same cache block in the L1 cache.

Computer Architecture Final Exam - Page 11 of 15 12/13/2019

(c) (2 points) Throughout the entire cache, how much space in the L1 cache is devoted
to storing tags and valid bits?

© less than 4KB

© more than 4KB and not greater than 16KB

© more than 16KB and not greater than 128KB

© more than 128KB and not greater than 256KB

© none the above

(d) (2 points) Which of the caches must have a dirty bit to store information about
modified blocks?

© L1

© L2

21. (2 points) Consider the task of taking an 32-bit unsigned integer x and constructing
a 16-bit unsigned integer from its most significant byte and least significant byte. For
example, given an x of 0x12345678, producing a result of 0x1278. Which of the following
C snippets would do this? (Select all that apply.)

© (x & 0xFF) | ((x >> 16) & 0xFF)

© (x & 0xFF) | ((x >> 24) & 0xFF)

© (x / 0x10000) & 0xFF00 + x % 256

© ((x & 0xFF000000) << 8) | ((x & 0xFF) >> 8)

22. (2 points) Which of the following are more typical of a RISC-like (reduced instruction set
computer) when compared to the CISC-like design philosophy? (Select all that apply.)

© Making sure more commonly used instructions have shorter encodings.

© Allowing all instructions to access memory rather than varying what kinds of
operands different instructions can have.

© Using a fixed-length encoding for instructions.

© Making each instruction have at most one output register.

Computer Architecture Final Exam - Page 12 of 15 12/13/2019

23. Consider the following assembly snippet:

subq %rbx, %rcx

mrmovq 8(%rcx), %rdx

addq %rax, %rdx

xorq %rcx, %r8

rmmovq %rcx, 8(%rdx)

(a) (2 points) Consider the assembly snippet executed on the single-cycle processor we
discussed in lecture. During the cycle in which the mrmovq instruction is fetched,
the address input to the data memory is equal to

© one of the register file outputs

© part of the output of the instruction memory

© the output of the program counter

© the output of the ALU

© the register number for %rdx

© the register number for %rcx

© the value 8

© irrelevant; the data memory’s address input does not matter for this in-
struction

(b) (2 points) Consider the assembly snippet executed on the single-cycle processor we
discussed in lecture. After the mrmovq instruction is fetched, the value of %rdx

changes

© at the following rising edge of the clock signal

© sometime before the following rising edge of the clock signal (depending
on how fast components of the processor are)

© after two rising edges of the clock signal

© after the addq instruction is fetched

(c) (3 points) Consider the assembly snippet executed on the 5 stage pipelined pro-
cessor we discussed in lecture with forwarding and branch prediction. If the subq

instruction is fetched during cycle 0, during what cycle is the writeback stage of
rmmovq performed?

Computer Architecture Final Exam - Page 13 of 15 12/13/2019

(d) (2 points) Consider the assembly snippet executed on the pipelined processor we
discussed in lecture with forwarding and branch prediction. Which of the following
forwarding operations would be useful? (Mark all that apply.)

© forwarding %rcx from subq to mrmovq

© forwarding %rcx from subq to xorq

© forwarding %rcx from subq to rmmovq

© forwarding %rdx from mrmovq to rmmovq

© forwarding %rdx from mrmovq to addq

© forwarding %rdx from addq to rmmovq

(e) (2 points) Consider executing the above assembly snippet on an out-of-order pro-
cessor. Assuming the processor has sufficiently many functional units (also known
as execution units) and capacities in instruction queues and other buffers, while the
processor is fetching a value from memory for mrmovq, it could also: (Mark all that
apply)

© perform the subtraction for the subq

© perform the addition for the addq

© perform the xor computation for the xorq

© perform the store for the rmmovq

24. Suppose an eight-stage pipelined processor uses branch prediction and forwarding to
resolve hazards. When a branch is fetched during cycle X, the processor identifies the
actual target of the branch and whether or not it is taken near the end of cycle X + 3.

When running a benchmark program on this processor, 10% of the instructions are
branches that require prediction and they are predicted correctly 80% of the time. In
the benchmark program, there are no other causes of squashing or stalling.

(a) (3 points) What is the average cycles per instruction of this processor on the bench-
mark program?

(b) (3 points) Suppose this processor did not implement branch prediction. What
would its average cycles per instruction be on the benchmark program?

Computer Architecture Final Exam - Page 14 of 15 12/13/2019

25. Use the code snippet below to answer the following questions:

irmovq $2, %rsi

irmovq $1, %rdi

foo:

subq %rdi, %rsi

jle foo

halt

(a) (3 points) what is the final value of %rsi when the above assembly snippet is exe-
cuted?

(b) (3 points) Suppose the above assembly snippet is executed on the five-stage pipelined
processor we discussed in lecture with branch prediction that predicts branches as
always taken as well as forwarding. If the first irmovq instruction is fetched during
cycle 0 then the halt instruction will run its writeback stage during what cycle?

(c) (3 points) By how many cycles (if any) would performance from the previous ques-
tion improve if the branch predictor never mispredicted?

Computer Architecture Final Exam - Page 15 of 15 12/13/2019

26. Reference the code below to answer the answer the following questions:

int foo(int *a, int *b, int *c, int n) {

for (int i = 0; i < n; ++i) {

c[i] = 0;

for (int j = 0; j < n; ++j) {

c[i] += a[i] * b[j];

}

}

}

(a) (2 points) Which of the following transformations would the compiler not be able to
perform without adding additional checks that pointers do not point to overlapping
memory regions? (Select all that apply)

© unrolling the loop with index j

© using multiple accumulators to compute each c[i]

© reordering the i and j loops

© computing each c[i] in a register and only storing it after the loop with
index j

(b) (2 points) Suppose we try using loop unrolling and multiple accumulators for the
computation of c[i] above, but determine that it does not improve performance.
Both before and after attempting to use multiple accumulators, the inner loop has
a throughput of about 1 cycle per iteration. Which of the following are plausible
reasons for this? (Mark all that apply.)

© The processor’s multipliers have a latency that is more than twice the
latency of additions.

© The processor can only start one multiply per cycle.

© Although the processor can start multiple adds per cycle, the latency of
the adders is too high

© The processor can only load two values per cycle.

